Normalized defining polynomial
\( x^{16} - 10x^{12} + 95x^{8} - 250x^{4} + 625 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(419430400000000000000\)
\(\medspace = 2^{36}\cdot 5^{14}\)
|
| |
| Root discriminant: | \(19.45\) |
| |
| Galois root discriminant: | $2^{9/4}5^{7/8}\approx 19.449849449321462$ | ||
| Ramified primes: |
\(2\), \(5\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2\times C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(i, \sqrt{5})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{10}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{10}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{10}a^{10}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{50}a^{11}-\frac{1}{5}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}+\frac{2}{5}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2100}a^{12}-\frac{1}{20}a^{10}-\frac{1}{42}a^{8}-\frac{1}{4}a^{6}-\frac{53}{210}a^{4}-\frac{1}{4}a^{2}-\frac{23}{84}$, $\frac{1}{2100}a^{13}-\frac{1}{100}a^{11}-\frac{1}{42}a^{9}-\frac{3}{20}a^{7}+\frac{26}{105}a^{5}-\frac{1}{2}a^{4}+\frac{1}{20}a^{3}-\frac{1}{2}a^{2}-\frac{23}{84}a-\frac{1}{2}$, $\frac{1}{10500}a^{14}+\frac{53}{2100}a^{10}-\frac{1}{20}a^{8}+\frac{419}{2100}a^{6}-\frac{1}{2}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{2}{21}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{10500}a^{15}+\frac{11}{2100}a^{11}-\frac{1}{20}a^{9}-\frac{211}{2100}a^{7}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{32}{105}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a-\frac{1}{2}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -\frac{1}{210} a^{12} + \frac{4}{105} a^{8} - \frac{10}{21} a^{4} + \frac{31}{42} \)
(order $4$)
|
| |
| Fundamental units: |
$\frac{4}{525}a^{12}-\frac{17}{210}a^{8}+\frac{97}{210}a^{4}-\frac{37}{42}$, $\frac{4}{875}a^{14}-\frac{1}{420}a^{12}-\frac{27}{700}a^{10}+\frac{2}{105}a^{8}+\frac{229}{700}a^{6}-\frac{5}{21}a^{4}-\frac{19}{28}a^{2}-\frac{11}{84}$, $\frac{1}{750}a^{14}-\frac{1}{420}a^{12}+\frac{1}{300}a^{10}+\frac{2}{105}a^{8}+\frac{13}{300}a^{6}-\frac{5}{21}a^{4}+\frac{7}{12}a^{2}-\frac{11}{84}$, $\frac{1}{2100}a^{15}-\frac{17}{10500}a^{14}-\frac{13}{2100}a^{13}-\frac{17}{2100}a^{12}-\frac{2}{525}a^{11}+\frac{11}{525}a^{10}+\frac{5}{84}a^{9}+\frac{23}{420}a^{8}+\frac{1}{21}a^{7}-\frac{149}{1050}a^{6}-\frac{197}{420}a^{5}-\frac{193}{420}a^{4}+\frac{53}{420}a^{3}+\frac{53}{84}a^{2}+\frac{17}{21}a+\frac{17}{42}$, $\frac{1}{1050}a^{15}-\frac{17}{10500}a^{14}-\frac{1}{525}a^{13}+\frac{17}{2100}a^{12}-\frac{4}{525}a^{11}+\frac{11}{525}a^{10}-\frac{1}{210}a^{9}-\frac{23}{420}a^{8}+\frac{2}{21}a^{7}-\frac{149}{1050}a^{6}+\frac{1}{105}a^{5}+\frac{193}{420}a^{4}-\frac{26}{105}a^{3}+\frac{53}{84}a^{2}-\frac{19}{21}a-\frac{17}{42}$, $\frac{1}{2625}a^{15}-\frac{1}{750}a^{14}+\frac{1}{700}a^{13}-\frac{19}{2100}a^{12}+\frac{23}{2100}a^{11}-\frac{1}{300}a^{10}+\frac{1}{35}a^{9}+\frac{11}{210}a^{8}-\frac{109}{2100}a^{7}-\frac{13}{300}a^{6}-\frac{9}{35}a^{5}-\frac{43}{210}a^{4}+\frac{139}{420}a^{3}+\frac{5}{12}a^{2}+\frac{19}{28}a+\frac{17}{84}$, $\frac{1}{2625}a^{15}-\frac{17}{10500}a^{14}-\frac{1}{2100}a^{13}+\frac{1}{84}a^{12}+\frac{23}{2100}a^{11}+\frac{11}{525}a^{10}+\frac{1}{42}a^{9}-\frac{19}{420}a^{8}-\frac{109}{2100}a^{7}-\frac{149}{1050}a^{6}-\frac{26}{105}a^{5}+\frac{37}{84}a^{4}+\frac{349}{420}a^{3}+\frac{53}{84}a^{2}+\frac{149}{84}a+\frac{59}{42}$
|
| |
| Regulator: | \( 8166.23968032 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 8166.23968032 \cdot 2}{4\cdot\sqrt{419430400000000000000}}\cr\approx \mathstrut & 0.484285115571 \end{aligned}\]
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-1}) \), 4.0.8000.1 x2, 4.2.2000.1 x2, \(\Q(i, \sqrt{5})\), 8.0.20480000000.2, 8.0.20480000000.3, 8.0.64000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 8 siblings: | 8.0.20480000000.2, 8.0.20480000000.3 |
| Degree 16 sibling: | 16.4.419430400000000000000.4 |
| Minimal sibling: | 8.0.20480000000.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.8.36b1.31 | $x^{16} + 8 x^{15} + 36 x^{14} + 112 x^{13} + 268 x^{12} + 516 x^{11} + 830 x^{10} + 1136 x^{9} + 1347 x^{8} + 1388 x^{7} + 1250 x^{6} + 972 x^{5} + 650 x^{4} + 360 x^{3} + 162 x^{2} + 52 x + 17$ | $8$ | $2$ | $36$ | 16T42 | $$[2, 2, 3]^{4}$$ |
|
\(5\)
| 5.1.8.7a1.4 | $x^{8} + 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $$[\ ]_{8}^{2}$$ |
| 5.1.8.7a1.4 | $x^{8} + 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $$[\ ]_{8}^{2}$$ |