Normalized defining polynomial
\( x^{16} - 2 x^{15} - 54 x^{14} - 454 x^{13} - 207 x^{12} + 16650 x^{11} + 145223 x^{10} + 735470 x^{9} + 2751785 x^{8} + 7653230 x^{7} + 16017095 x^{6} + 26533814 x^{5} + 41196780 x^{4} + 54084660 x^{3} + 40870017 x^{2} - 5449640 x + 2688284 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(419374069872350970710519002168327921=11^{8}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $168.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{9} + \frac{1}{32} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5} - \frac{5}{32} a^{4} + \frac{1}{32} a^{3} + \frac{15}{32} a^{2} + \frac{3}{8} a + \frac{1}{8}$, $\frac{1}{32} a^{11} + \frac{1}{32} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{7}{32} a^{5} + \frac{1}{8} a^{4} - \frac{1}{32} a^{2} - \frac{1}{4} a + \frac{1}{8}$, $\frac{1}{704} a^{12} + \frac{5}{352} a^{11} - \frac{1}{64} a^{10} - \frac{1}{22} a^{9} + \frac{27}{704} a^{8} - \frac{1}{44} a^{7} - \frac{11}{64} a^{6} - \frac{37}{352} a^{5} - \frac{17}{704} a^{4} - \frac{7}{88} a^{3} + \frac{193}{704} a^{2} + \frac{37}{88} a - \frac{85}{176}$, $\frac{1}{704} a^{13} - \frac{1}{704} a^{11} - \frac{5}{352} a^{10} - \frac{5}{704} a^{9} - \frac{49}{704} a^{7} - \frac{1}{88} a^{6} + \frac{85}{704} a^{5} + \frac{57}{352} a^{4} - \frac{127}{704} a^{3} - \frac{5}{22} a^{2} - \frac{3}{16} a - \frac{1}{22}$, $\frac{1}{5778640384} a^{14} + \frac{2201065}{5778640384} a^{13} - \frac{461627}{722330048} a^{12} - \frac{37806715}{5778640384} a^{11} + \frac{36242}{11286407} a^{10} + \frac{76593553}{5778640384} a^{9} - \frac{31886831}{2889320192} a^{8} - \frac{712041425}{5778640384} a^{7} - \frac{333880871}{1444660096} a^{6} + \frac{50808557}{525330944} a^{5} - \frac{16166449}{722330048} a^{4} + \frac{291091539}{5778640384} a^{3} + \frac{1396190469}{5778640384} a^{2} - \frac{108290125}{1444660096} a - \frac{76819429}{1444660096}$, $\frac{1}{2955149859972867726412787004082688} a^{15} + \frac{20830239883278906412051}{268649987270260702401162454916608} a^{14} - \frac{95744932818186734757999660411}{369393732496608465801598375510336} a^{13} - \frac{358852718065895680575235166571}{2955149859972867726412787004082688} a^{12} - \frac{87136762506100674823890657531}{8395312102195646950036326716144} a^{11} + \frac{33649754674223008506883530737009}{2955149859972867726412787004082688} a^{10} + \frac{70553932548293841612069736454569}{1477574929986433863206393502041344} a^{9} + \frac{162002568396718177957673940115903}{2955149859972867726412787004082688} a^{8} - \frac{3681153826285430198633005454869}{67162496817565175600290613729152} a^{7} - \frac{61600418006859850430339014569507}{268649987270260702401162454916608} a^{6} - \frac{56258869252996027042991961020365}{369393732496608465801598375510336} a^{5} + \frac{242817331768532366677036992857715}{2955149859972867726412787004082688} a^{4} - \frac{1168840772151270878981872148259819}{2955149859972867726412787004082688} a^{3} + \frac{204212378749021814209175218778933}{738787464993216931603196751020672} a^{2} - \frac{6340792247069420857529361223663}{67162496817565175600290613729152} a - \frac{601725881669991948646350170801}{92348433124152116450399593877584}$
Class group and class number
$C_{2}\times C_{2}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19563150221.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-979}) \), \(\Q(\sqrt{89}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-11}, \sqrt{89})\), 4.4.704969.1, 4.0.85301249.2, 8.0.7276303080960001.2, 8.4.5351991522359009.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |