Normalized defining polynomial
\( x^{16} + 50 x^{14} + 1917 x^{12} - 5630 x^{10} - 240908 x^{8} - 707030 x^{6} + 57802141 x^{4} - 1883834854 x^{2} + 21028770169 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(419374069872350970710519002168327921=11^{8}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $168.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{6} - \frac{1}{8} a^{3} + \frac{1}{8}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{7} - \frac{1}{8} a^{4} + \frac{1}{8} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{8} a^{5} + \frac{1}{8} a^{2}$, $\frac{1}{32} a^{12} + \frac{1}{16} a^{6} - \frac{3}{32}$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} + \frac{1}{32} a^{7} - \frac{1}{32} a^{6} + \frac{29}{64} a - \frac{29}{64}$, $\frac{1}{191434477426460493552923070464} a^{14} - \frac{391570609478305107490167885}{191434477426460493552923070464} a^{12} - \frac{651329704811671024987321733}{11964654839153780847057691904} a^{10} - \frac{2982866950460413338206932519}{95717238713230246776461535232} a^{8} - \frac{1}{8} a^{7} + \frac{4428955366885330243931403475}{95717238713230246776461535232} a^{6} + \frac{644975263994705905194172205}{11964654839153780847057691904} a^{4} - \frac{9964645987097190860574589331}{191434477426460493552923070464} a^{2} + \frac{1}{8} a - \frac{8438269201763470017906902155}{17403134311496408504811188224}$, $\frac{1}{55520975750086631103180066434392064} a^{15} - \frac{1}{382868954852920987105846140928} a^{14} + \frac{321597565851004997082956210519731}{55520975750086631103180066434392064} a^{13} + \frac{391570609478305107490167885}{382868954852920987105846140928} a^{12} - \frac{187485297077389663321813137245925}{3470060984380414443948754152149504} a^{11} - \frac{844252150082551580894889755}{23929309678307561694115383808} a^{10} + \frac{1368035651441892841639238285370841}{27760487875043315551590033217196032} a^{9} + \frac{2982866950460413338206932519}{191434477426460493552923070464} a^{8} + \frac{366661276501234499388326899801555}{27760487875043315551590033217196032} a^{7} + \frac{19500354311422231450183980333}{191434477426460493552923070464} a^{6} + \frac{779161401828781616805390324133005}{3470060984380414443948754152149504} a^{5} + \frac{850606590899516700688039283}{23929309678307561694115383808} a^{4} - \frac{5969798425951444358391990065473939}{55520975750086631103180066434392064} a^{3} + \frac{9964645987097190860574589331}{382868954852920987105846140928} a^{2} - \frac{2089090470284280857117336897604491}{5047361431826057373016369675853824} a + \frac{4087485623889367891704105099}{34806268622992817009622376448}$
Class group and class number
$C_{2}\times C_{2}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59363790305.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $89$ | 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |