Normalized defining polynomial
\( x^{16} - 16 x^{13} + 16 x^{12} - 80 x^{11} + 256 x^{10} - 480 x^{9} + 1608 x^{8} - 3840 x^{7} + 5936 x^{6} - 9024 x^{5} + 11416 x^{4} - 7680 x^{3} + 6064 x^{2} - 4960 x + 1502 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(41726830242636185108217856=2^{74}\cdot 47^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{799} a^{14} - \frac{380}{799} a^{13} + \frac{302}{799} a^{12} - \frac{347}{799} a^{11} - \frac{20}{799} a^{10} + \frac{116}{799} a^{9} + \frac{88}{799} a^{8} + \frac{149}{799} a^{7} - \frac{375}{799} a^{6} - \frac{240}{799} a^{5} + \frac{38}{799} a^{4} + \frac{110}{799} a^{3} - \frac{199}{799} a^{2} - \frac{193}{799} a - \frac{305}{799}$, $\frac{1}{10090552929838562303494111} a^{15} + \frac{3983102726024609215976}{10090552929838562303494111} a^{14} + \frac{4658782361484686184879218}{10090552929838562303494111} a^{13} + \frac{3371280388461913933157992}{10090552929838562303494111} a^{12} + \frac{3352622716273148372136781}{10090552929838562303494111} a^{11} - \frac{322514580127400247407407}{10090552929838562303494111} a^{10} + \frac{1856438014547487170985827}{10090552929838562303494111} a^{9} + \frac{3219601313414151589146080}{10090552929838562303494111} a^{8} + \frac{2898346107506048215235636}{10090552929838562303494111} a^{7} - \frac{2140850946247649562129644}{10090552929838562303494111} a^{6} + \frac{4207875281179010424870453}{10090552929838562303494111} a^{5} - \frac{2469991876956501610230949}{10090552929838562303494111} a^{4} + \frac{1635928528976544053277099}{10090552929838562303494111} a^{3} - \frac{2296829494800778189200534}{10090552929838562303494111} a^{2} - \frac{404454335754975368098475}{10090552929838562303494111} a - \frac{1457669394129856503793683}{10090552929838562303494111}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1871936.37324 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.0.2147483648.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 47 | Data not computed | ||||||