Normalized defining polynomial
\( x^{16} - 7 x^{15} + 26 x^{14} - 45 x^{13} + 211 x^{12} - 1274 x^{11} - 4493 x^{10} + 20935 x^{9} + 11734 x^{8} + 264213 x^{7} - 667219 x^{6} - 3721270 x^{5} + 6436324 x^{4} + 12698880 x^{3} + 10833600 x^{2} - 76032000 x + 51840000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4154761051926475161829933538084673=3^{8}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $126.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{6} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{60} a^{8} - \frac{1}{15} a^{7} + \frac{1}{15} a^{6} + \frac{1}{30} a^{5} - \frac{7}{30} a^{4} - \frac{1}{15} a^{3} + \frac{3}{20} a^{2} - \frac{3}{10} a$, $\frac{1}{180} a^{9} - \frac{1}{15} a^{7} - \frac{1}{15} a^{6} - \frac{1}{30} a^{5} - \frac{1}{6} a^{4} + \frac{83}{180} a^{3} + \frac{13}{30} a^{2} + \frac{13}{30} a$, $\frac{1}{360} a^{10} - \frac{1}{360} a^{9} + \frac{1}{30} a^{7} + \frac{1}{15} a^{6} + \frac{1}{6} a^{5} - \frac{17}{72} a^{4} + \frac{97}{360} a^{3} - \frac{1}{30} a^{2} - \frac{1}{15} a$, $\frac{1}{1080} a^{11} - \frac{1}{1080} a^{10} + \frac{1}{180} a^{8} - \frac{1}{15} a^{7} + \frac{1}{30} a^{6} - \frac{217}{1080} a^{5} + \frac{181}{1080} a^{4} + \frac{7}{30} a^{3} - \frac{73}{180} a^{2} + \frac{13}{30} a$, $\frac{1}{2160} a^{12} + \frac{1}{1080} a^{10} + \frac{1}{720} a^{9} + \frac{1}{360} a^{8} + \frac{1}{30} a^{7} + \frac{179}{2160} a^{6} + \frac{1}{20} a^{5} + \frac{25}{216} a^{4} - \frac{301}{720} a^{3} - \frac{163}{360} a^{2} - \frac{5}{12} a$, $\frac{1}{8812800} a^{13} + \frac{643}{4406400} a^{12} + \frac{521}{2203200} a^{11} - \frac{2273}{8812800} a^{10} - \frac{23}{1468800} a^{9} - \frac{2377}{367200} a^{8} + \frac{241523}{8812800} a^{7} + \frac{135887}{4406400} a^{6} + \frac{1141}{550800} a^{5} - \frac{132259}{8812800} a^{4} + \frac{729569}{1468800} a^{3} - \frac{214069}{734400} a^{2} + \frac{1057}{4080} a - \frac{31}{68}$, $\frac{1}{317260800} a^{14} - \frac{1}{158630400} a^{13} - \frac{497}{26438400} a^{12} + \frac{2899}{63452160} a^{11} - \frac{74417}{158630400} a^{10} + \frac{15229}{13219200} a^{9} - \frac{2266573}{317260800} a^{8} + \frac{1937639}{31726080} a^{7} - \frac{104501}{3304800} a^{6} - \frac{36334787}{317260800} a^{5} + \frac{2829983}{158630400} a^{4} - \frac{2396533}{5287680} a^{3} - \frac{333257}{6609600} a^{2} + \frac{16181}{36720} a - \frac{109}{306}$, $\frac{1}{1439382469398596068199040000} a^{15} + \frac{13298251859758307}{26655230914788816077760000} a^{14} + \frac{3293490785489347357}{179922808674824508524880000} a^{13} + \frac{19677571767168458087083}{287876493879719213639808000} a^{12} + \frac{36692499033201171160877}{79965692744366448233280000} a^{11} - \frac{422938182688967511125891}{359845617349649017049760000} a^{10} - \frac{3549672994734181176974533}{1439382469398596068199040000} a^{9} - \frac{35225468528366060643449}{47979415646619868939968000} a^{8} + \frac{2167095378431788582292971}{359845617349649017049760000} a^{7} - \frac{24064738555094322623340347}{1439382469398596068199040000} a^{6} - \frac{1094545786691905296479293}{7269608431306040748480000} a^{5} + \frac{2893634001065625188522831}{35984561734964901704976000} a^{4} + \frac{793874650971717081767947}{1817402107826510187120000} a^{3} + \frac{916622770805952336372193}{5997426955827483617496000} a^{2} - \frac{4981361075828893863001}{33319038643486020097200} a + \frac{185845794026820405463}{555317310724767001620}$
Class group and class number
$C_{32}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 150480538543 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-291}) \), 4.0.8214057.2, 8.0.6544661042727153.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97 | Data not computed | ||||||