Normalized defining polynomial
\( x^{16} - 8 x^{15} + 36 x^{14} - 112 x^{13} + 283 x^{12} - 606 x^{11} + 1106 x^{10} - 1691 x^{9} + 2381 x^{8} - 3184 x^{7} + 3856 x^{6} - 3845 x^{5} + 5215 x^{4} - 6182 x^{3} + 1642 x^{2} + 1108 x + 1831 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4147643767353759765625=5^{12}\cdot 13^{4}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} + \frac{2}{7} a^{9} + \frac{2}{7} a^{7} + \frac{2}{7} a^{4} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{11} + \frac{3}{7} a^{9} + \frac{2}{7} a^{8} + \frac{3}{7} a^{7} + \frac{2}{7} a^{5} + \frac{2}{7} a^{4} - \frac{3}{7} a^{3} + \frac{2}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{12} + \frac{3}{7} a^{9} + \frac{3}{7} a^{8} + \frac{1}{7} a^{7} + \frac{2}{7} a^{6} + \frac{2}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{13} - \frac{3}{7} a^{9} + \frac{1}{7} a^{8} + \frac{3}{7} a^{7} + \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} - \frac{2}{7} a^{2} + \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{18371653321} a^{14} - \frac{1}{2624521903} a^{13} - \frac{1000588186}{18371653321} a^{12} + \frac{754485401}{18371653321} a^{11} - \frac{534250358}{18371653321} a^{10} + \frac{5378382425}{18371653321} a^{9} - \frac{1011493682}{18371653321} a^{8} - \frac{4177848707}{18371653321} a^{7} + \frac{1455735553}{18371653321} a^{6} + \frac{7748190110}{18371653321} a^{5} - \frac{796703273}{2624521903} a^{4} - \frac{7992012373}{18371653321} a^{3} + \frac{9013712543}{18371653321} a^{2} - \frac{1432867906}{18371653321} a + \frac{1533824647}{18371653321}$, $\frac{1}{224115798862879} a^{15} + \frac{6092}{224115798862879} a^{14} - \frac{4709392924861}{224115798862879} a^{13} - \frac{7508576601021}{224115798862879} a^{12} - \frac{12287726235464}{224115798862879} a^{11} + \frac{822317735131}{20374163532989} a^{10} - \frac{66476047108388}{224115798862879} a^{9} + \frac{68993029486695}{224115798862879} a^{8} + \frac{44766085205355}{224115798862879} a^{7} - \frac{11595188029697}{32016542694697} a^{6} + \frac{1526164439078}{20374163532989} a^{5} - \frac{4907823376583}{224115798862879} a^{4} + \frac{26920198625494}{224115798862879} a^{3} - \frac{4554300486304}{32016542694697} a^{2} + \frac{65439335010442}{224115798862879} a + \frac{45872394280395}{224115798862879}$
Class group and class number
$C_{6}$, which has order $6$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1790.28536491 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T500):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.4.15243125.1, 8.0.64402203125.1, 8.4.2220765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |