Normalized defining polynomial
\( x^{16} + 88 x^{14} + 2928 x^{12} + 47936 x^{10} + 418966 x^{8} + 1996208 x^{6} + 4988280 x^{4} + 5617888 x^{2} + 1612808 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(414692653834021167975731560448=2^{59}\cdot 449^{2}\cdot 1889^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 449, 1889$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{16} a^{12} - \frac{1}{4} a^{11} - \frac{1}{8} a^{8} - \frac{3}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{9} - \frac{3}{8} a^{5} + \frac{1}{4} a$, $\frac{1}{9089479465857394192} a^{14} - \frac{32899046880613075}{1136184933232174274} a^{12} + \frac{954803642717463091}{4544739732928697096} a^{10} + \frac{16646343928100549}{568092466616087137} a^{8} + \frac{39255359282397093}{267337631348746888} a^{6} + \frac{1114378318563719}{33417203918593361} a^{4} - \frac{1005577549040589527}{2272369866464348548} a^{2} - \frac{621525644649394}{1265239346583713}$, $\frac{1}{9089479465857394192} a^{15} - \frac{32899046880613075}{1136184933232174274} a^{13} + \frac{954803642717463091}{4544739732928697096} a^{11} + \frac{16646343928100549}{568092466616087137} a^{9} + \frac{39255359282397093}{267337631348746888} a^{7} + \frac{1114378318563719}{33417203918593361} a^{5} - \frac{1005577549040589527}{2272369866464348548} a^{3} - \frac{621525644649394}{1265239346583713} a$
Class group and class number
$C_{2}\times C_{2}\times C_{1782}$, which has order $7128$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56271.9156358 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 73 conjugacy class representatives for t16n1584 are not computed |
| Character table for t16n1584 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7923040256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.33 | $x^{8} + 12 x^{4} + 34$ | $8$ | $1$ | $31$ | $(C_8:C_2):C_2$ | $[2, 3, 7/2, 4, 5]$ |
| 2.8.28.25 | $x^{8} + 8 x^{5} + 8 x^{4} + 30$ | $8$ | $1$ | $28$ | $C_2^3: C_4$ | $[2, 3, 7/2, 4, 17/4]$ | |
| 449 | Data not computed | ||||||
| 1889 | Data not computed | ||||||