Normalized defining polynomial
\( x^{16} - 6 x^{15} + 22 x^{14} - 70 x^{13} + 211 x^{12} - 540 x^{11} + 1159 x^{10} - 2046 x^{9} + 3007 x^{8} - 3680 x^{7} + 3748 x^{6} - 3172 x^{5} + 2192 x^{4} - 1204 x^{3} + 505 x^{2} - 142 x + 19 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(41154791040000000000=2^{16}\cdot 3^{12}\cdot 5^{10}\cdot 11^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{38} a^{14} - \frac{7}{19} a^{13} - \frac{1}{2} a^{12} - \frac{9}{19} a^{11} - \frac{3}{19} a^{10} - \frac{9}{19} a^{9} + \frac{17}{38} a^{8} + \frac{1}{19} a^{7} + \frac{5}{19} a^{6} + \frac{7}{19} a^{4} - \frac{8}{19} a^{3} - \frac{6}{19} a^{2} + \frac{5}{19} a - \frac{1}{2}$, $\frac{1}{11546284306} a^{15} + \frac{4480362}{5773142153} a^{14} + \frac{855755857}{11546284306} a^{13} - \frac{380698487}{5773142153} a^{12} - \frac{1088063087}{5773142153} a^{11} + \frac{1228047447}{5773142153} a^{10} + \frac{40926671}{312061738} a^{9} - \frac{1888905154}{5773142153} a^{8} - \frac{1553776641}{5773142153} a^{7} - \frac{2404311491}{5773142153} a^{6} + \frac{189481782}{5773142153} a^{5} + \frac{2434937668}{5773142153} a^{4} + \frac{1235864564}{5773142153} a^{3} + \frac{1082816945}{5773142153} a^{2} + \frac{4666895727}{11546284306} a + \frac{16519848}{303849587}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{236458391}{312061738} a^{15} + \frac{650057234}{156030869} a^{14} - \frac{4555022795}{312061738} a^{13} + \frac{7141908675}{156030869} a^{12} - \frac{21387086779}{156030869} a^{11} + \frac{53188416505}{156030869} a^{10} - \frac{221117039811}{312061738} a^{9} + \frac{186842304118}{156030869} a^{8} - \frac{262472437119}{156030869} a^{7} + \frac{304180507109}{156030869} a^{6} - \frac{291233781465}{156030869} a^{5} + \frac{229212535905}{156030869} a^{4} - \frac{144074969721}{156030869} a^{3} + \frac{69667115127}{156030869} a^{2} - \frac{48462915681}{312061738} a + \frac{230433617}{8212151} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5861.5743076 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n799 are not computed |
| Character table for t16n799 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), 4.2.3600.1, 4.2.400.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 8.0.12960000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.8.8.2 | $x^{8} + 2 x^{7} + 8 x^{2} + 48$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $[2, 2]^{4}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |