Normalized defining polynomial
\( x^{16} - 5 x^{15} + 146 x^{14} - 1265 x^{13} + 2855 x^{12} + 46132 x^{11} - 283221 x^{10} + 11221001 x^{9} + 76707714 x^{8} - 1902825239 x^{7} + 20717625413 x^{6} - 188022386120 x^{5} + 1304389721708 x^{4} - 8627965710464 x^{3} + 49990424556304 x^{2} - 169299154243200 x + 231877632771072 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(410614370925299326221754150224933859206386689=29^{14}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $614.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{12} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{12} a^{2} - \frac{1}{3} a$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{3} - \frac{1}{3} a$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{5}{12} a^{2} + \frac{1}{6} a$, $\frac{1}{72} a^{11} - \frac{1}{72} a^{10} + \frac{1}{36} a^{9} - \frac{1}{36} a^{8} + \frac{1}{36} a^{7} + \frac{5}{36} a^{6} + \frac{11}{72} a^{5} + \frac{7}{72} a^{4} - \frac{5}{18} a^{3} + \frac{7}{36} a^{2} + \frac{1}{3} a$, $\frac{1}{144} a^{12} - \frac{1}{72} a^{10} - \frac{1}{48} a^{9} - \frac{1}{24} a^{8} - \frac{1}{4} a^{7} - \frac{7}{48} a^{6} + \frac{1}{6} a^{5} + \frac{13}{72} a^{4} + \frac{7}{16} a^{3} - \frac{5}{72} a^{2} - \frac{1}{12} a$, $\frac{1}{864} a^{13} - \frac{1}{864} a^{12} + \frac{1}{288} a^{10} - \frac{5}{864} a^{9} - \frac{17}{432} a^{8} - \frac{125}{864} a^{7} + \frac{101}{864} a^{6} - \frac{1}{72} a^{5} - \frac{49}{288} a^{4} - \frac{383}{864} a^{3} + \frac{199}{432} a^{2} - \frac{23}{72} a - \frac{1}{3}$, $\frac{1}{1728} a^{14} - \frac{1}{1728} a^{13} - \frac{1}{288} a^{12} + \frac{1}{576} a^{11} - \frac{29}{1728} a^{10} - \frac{13}{432} a^{9} - \frac{17}{1728} a^{8} + \frac{29}{1728} a^{7} + \frac{31}{288} a^{6} + \frac{23}{576} a^{5} + \frac{73}{1728} a^{4} + \frac{17}{108} a^{3} + \frac{1}{8} a^{2} - \frac{11}{24} a$, $\frac{1}{4138751314600143054660169726420512317001938777413042382939826768173312693026976904576} a^{15} + \frac{646628447706980249347495401012336008700668981895303381455963012165531248097961911}{4138751314600143054660169726420512317001938777413042382939826768173312693026976904576} a^{14} + \frac{1114361277875847751299439478916016365512492904086681210620692893227833643419612331}{2069375657300071527330084863210256158500969388706521191469913384086656346513488452288} a^{13} + \frac{5524481791404630607417312527381392341248460102148711042469576385850412799851930919}{4138751314600143054660169726420512317001938777413042382939826768173312693026976904576} a^{12} - \frac{26342293764191157763494299000259598891328932921934327608509752615172395884039570949}{4138751314600143054660169726420512317001938777413042382939826768173312693026976904576} a^{11} + \frac{4048829663661869468652147079540831944714544282693559451404210225362882843939931443}{517343914325017881832521215802564039625242347176630297867478346021664086628372113072} a^{10} - \frac{3066668615677632465042171651954705827100193347826222724588432529335873087007547687}{1379583771533381018220056575473504105667312925804347460979942256057770897675658968192} a^{9} - \frac{3611841925740172261465109387724643916539308573817310152217704328531746520972276009}{153287085725931224246672952830389345074145880644927495664438028450863433075073218688} a^{8} - \frac{80494879273461122447872692292694579290661807180969689550481824474265204746989962713}{2069375657300071527330084863210256158500969388706521191469913384086656346513488452288} a^{7} - \frac{923492821143203030814183065822551451115453237459491063155997810485968211690277460767}{4138751314600143054660169726420512317001938777413042382939826768173312693026976904576} a^{6} - \frac{260556290249616874514173595438714433564150760417370185600985020559998710710983946639}{4138751314600143054660169726420512317001938777413042382939826768173312693026976904576} a^{5} - \frac{192661840804008274295735246634458977477694860875041140309151474415775902929607992503}{1034687828650035763665042431605128079250484694353260595734956692043328173256744226144} a^{4} + \frac{138973372923624969222537442013074027390699151894234125291818834411891254369332268303}{1034687828650035763665042431605128079250484694353260595734956692043328173256744226144} a^{3} - \frac{17987586169156090560290694719938195678058960846176317978369322009664308939067017465}{129335978581254470458130303950641009906310586794157574466869586505416021657093028268} a^{2} + \frac{5487283318356776967562623575464254456141995964077877460555912391911757707424687525}{86223985720836313638753535967094006604207057862771716311246391003610681104728685512} a + \frac{220308735965208160058121960079737649714656269249231266765921225822319894516557081}{3592666071701513068281397331962250275175294077615488179635266291817111712697028563}$
Class group and class number
$C_{2}\times C_{3118}\times C_{6236}$, which has order $38887696$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1358079502.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.8.7.1 | $x^{8} - 29$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.1 | $x^{8} - 29$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $53$ | 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |