Normalized defining polynomial
\( x^{16} - 4 x^{15} - 2 x^{14} + 44 x^{13} - 39 x^{12} - 52 x^{11} + 220 x^{10} - 108 x^{9} + 1364 x^{8} - 44 x^{7} + 998 x^{6} + 3472 x^{5} - 8980 x^{4} - 3988 x^{3} + 21012 x^{2} - 6952 x + 6241 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(409864247953326282266116096=2^{44}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(208=2^{4}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{208}(1,·)$, $\chi_{208}(5,·)$, $\chi_{208}(129,·)$, $\chi_{208}(73,·)$, $\chi_{208}(77,·)$, $\chi_{208}(21,·)$, $\chi_{208}(25,·)$, $\chi_{208}(157,·)$, $\chi_{208}(161,·)$, $\chi_{208}(105,·)$, $\chi_{208}(109,·)$, $\chi_{208}(177,·)$, $\chi_{208}(53,·)$, $\chi_{208}(57,·)$, $\chi_{208}(125,·)$, $\chi_{208}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{116590092603} a^{14} - \frac{2942005676}{38863364201} a^{13} - \frac{12050527582}{116590092603} a^{12} - \frac{105439292}{1689711487} a^{11} + \frac{4701331771}{38863364201} a^{10} - \frac{19325554351}{38863364201} a^{9} - \frac{11335762243}{38863364201} a^{8} + \frac{2750631092}{38863364201} a^{7} - \frac{32887332163}{116590092603} a^{6} - \frac{6271113768}{38863364201} a^{5} - \frac{26121332429}{116590092603} a^{4} + \frac{11034421382}{38863364201} a^{3} - \frac{45377800783}{116590092603} a^{2} + \frac{7348107993}{38863364201} a + \frac{37955525}{491941319}$, $\frac{1}{165413781954274185555603} a^{15} + \frac{676926295402}{165413781954274185555603} a^{14} + \frac{5955115598849711196167}{55137927318091395185201} a^{13} - \frac{1828466738440675101605}{165413781954274185555603} a^{12} + \frac{26819443938903999674609}{165413781954274185555603} a^{11} - \frac{63504620482181968304708}{165413781954274185555603} a^{10} + \frac{15315855998798538672362}{55137927318091395185201} a^{9} + \frac{3095964909574400515545}{55137927318091395185201} a^{8} - \frac{18053813320897538750905}{165413781954274185555603} a^{7} + \frac{20177538201057263373713}{165413781954274185555603} a^{6} + \frac{21673356399822038739171}{55137927318091395185201} a^{5} + \frac{10410935866644490916729}{165413781954274185555603} a^{4} - \frac{19591173350664518986042}{55137927318091395185201} a^{3} - \frac{68827016367928321230314}{165413781954274185555603} a^{2} + \frac{5045295745342120295402}{165413781954274185555603} a - \frac{659531308776530459459}{2093845341193344120957}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 108889.88555195347 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 13 | Data not computed | ||||||