Normalized defining polynomial
\( x^{16} - 4 x^{15} + 30 x^{14} - 68 x^{13} + 273 x^{12} - 468 x^{11} + 1236 x^{10} - 1660 x^{9} + 2356 x^{8} - 3756 x^{7} + 4134 x^{6} - 1280 x^{5} + 1444 x^{4} - 4436 x^{3} - 4652 x^{2} + 3912 x + 4241 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(409864247953326282266116096=2^{44}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(208=2^{4}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{208}(1,·)$, $\chi_{208}(131,·)$, $\chi_{208}(129,·)$, $\chi_{208}(73,·)$, $\chi_{208}(203,·)$, $\chi_{208}(83,·)$, $\chi_{208}(25,·)$, $\chi_{208}(27,·)$, $\chi_{208}(161,·)$, $\chi_{208}(99,·)$, $\chi_{208}(105,·)$, $\chi_{208}(177,·)$, $\chi_{208}(51,·)$, $\chi_{208}(155,·)$, $\chi_{208}(57,·)$, $\chi_{208}(187,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{15} a^{12} - \frac{1}{5} a^{11} + \frac{1}{3} a^{10} + \frac{1}{5} a^{7} + \frac{4}{15} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{3} a^{2} - \frac{2}{5} a - \frac{7}{15}$, $\frac{1}{15} a^{13} - \frac{4}{15} a^{11} + \frac{1}{5} a^{8} - \frac{2}{15} a^{7} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{4}{15} a^{3} - \frac{2}{5} a^{2} + \frac{1}{3} a - \frac{2}{5}$, $\frac{1}{232680255} a^{14} - \frac{6661474}{232680255} a^{13} + \frac{4037069}{232680255} a^{12} + \frac{8618737}{232680255} a^{11} + \frac{4313366}{15512017} a^{10} - \frac{14571484}{77560085} a^{9} + \frac{113610811}{232680255} a^{8} + \frac{54963137}{232680255} a^{7} + \frac{24934606}{77560085} a^{6} + \frac{25232856}{77560085} a^{5} + \frac{8601187}{46536051} a^{4} - \frac{110432984}{232680255} a^{3} + \frac{86238089}{232680255} a^{2} + \frac{100733221}{232680255} a + \frac{14698721}{77560085}$, $\frac{1}{7727783983384819785} a^{15} + \frac{14165737001}{7727783983384819785} a^{14} - \frac{251105187373717097}{7727783983384819785} a^{13} - \frac{14630160825355616}{515185598892321319} a^{12} + \frac{456001230635581049}{1545556796676963957} a^{11} - \frac{1155554376360787292}{7727783983384819785} a^{10} + \frac{705805880661758176}{7727783983384819785} a^{9} + \frac{2570987718672634049}{7727783983384819785} a^{8} + \frac{3155338843962323639}{7727783983384819785} a^{7} + \frac{76772963840127355}{1545556796676963957} a^{6} - \frac{1895185590490634}{29383209062299695} a^{5} + \frac{1599716523568442689}{7727783983384819785} a^{4} + \frac{568869441351572323}{2575927994461606595} a^{3} - \frac{1840603908335617018}{7727783983384819785} a^{2} - \frac{244622083397097349}{1545556796676963957} a - \frac{523290442286515066}{1545556796676963957}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 427842.96491379576 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 13 | Data not computed | ||||||