Normalized defining polynomial
\( x^{16} - x^{15} + 1701 x^{14} - 5140 x^{13} + 957458 x^{12} - 3890525 x^{11} + 263030578 x^{10} - 1198723539 x^{9} + 40240148282 x^{8} - 188524940501 x^{7} + 3561203748047 x^{6} - 16001130613788 x^{5} + 176031116223380 x^{4} - 684237862730000 x^{3} + 4135020510780571 x^{2} - 10799903260538834 x + 24670268999409811 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(408924191550659033534214062789206959759730273=71^{8}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $614.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(6887=71\cdot 97\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{6887}(1,·)$, $\chi_{6887}(70,·)$, $\chi_{6887}(3407,·)$, $\chi_{6887}(212,·)$, $\chi_{6887}(283,·)$, $\chi_{6887}(5537,·)$, $\chi_{6887}(4900,·)$, $\chi_{6887}(3622,·)$, $\chi_{6887}(5608,·)$, $\chi_{6887}(1066,·)$, $\chi_{6887}(4332,·)$, $\chi_{6887}(2413,·)$, $\chi_{6887}(3054,·)$, $\chi_{6887}(5750,·)$, $\chi_{6887}(6036,·)$, $\chi_{6887}(1918,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{15} - \frac{5056216651590323541498942028676246839830147649603548183584128008768074604093007384613026976932720108702705481547}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{14} - \frac{7140789221634286067202070848395049495818016158460060381456032050956004740813200932286876470870448615644673344799}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{13} + \frac{6836947103678099242679076509849316240083299780146364974365293778455254053728855694325512298987923508627784018511}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{12} - \frac{356301416984502183299478689409758408807238437263772119668984979676962763142649833956969645011152507937073290540}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{11} + \frac{3515910028923024122246882131767833390613112276828762021805248812900996810513960007431333632722118122022993620431}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{10} + \frac{2841110762675669655568896026156517667042832573773480529301856216218644729725573653991383028752695847917279657995}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{9} + \frac{6723686285283713883538634107786158924848362873123678665787465511024982252360787891523748830784870791194987288198}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{8} - \frac{2252363744699512632114723216619998568820996911825201764298673797057333407741804692252768607639535132062617447011}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{7} - \frac{498487236713468458405002902830988452022926629122225545357405466558235102880944777464298887431274309036904997049}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{6} + \frac{7680066119746322808382071741285840826438354200833906405734215167402648218503242029178981361880916510065005845915}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{5} - \frac{5217466425380783864919124412624458204867794598918164480973714086703480841154236002890214950969653843760746839021}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{4} - \frac{6625792927599340730342521037458628688022073606905050971793069534744230409926961457976262959524621316245098246172}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{3} + \frac{1147524009058334605433721258424072157853077051216906794380978529175284291617129523763001451421197804997595634893}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a^{2} + \frac{2737030275328453506712240051859055179480486845552199999126069970750026156601404105001618514008087133185484010945}{16994595042283242800126150357421429122564271825399459753592999457798508909785969262687199426182898503305092002199} a - \frac{53458883304497970441054492368373462937452059612214410686546004907439485080263312507787344304734404564084789822}{150394646391887104425895135906384328518267892260172210208787605821225742564477604094576986072415031002699929223}$
Class group and class number
$C_{1546273474}$, which has order $1546273474$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1675810.87182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 71 | Data not computed | ||||||
| 97 | Data not computed | ||||||