Normalized defining polynomial
\( x^{16} + 68 x^{14} - 24 x^{13} + 1534 x^{12} - 216 x^{11} + 14408 x^{10} + 36 x^{9} + 70945 x^{8} - 1920 x^{7} + 181556 x^{6} + 5796 x^{5} + 274372 x^{4} + 73728 x^{3} + 163352 x^{2} + 74100 x + 204241 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4076113365999630907663712256=2^{40}\cdot 3^{12}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{51} a^{10} + \frac{2}{17} a^{9} - \frac{2}{17} a^{8} - \frac{4}{17} a^{7} + \frac{8}{51} a^{6} + \frac{6}{17} a^{5} + \frac{7}{51} a^{4} - \frac{4}{17} a^{3} + \frac{4}{17} a^{2} + \frac{3}{17} a - \frac{10}{51}$, $\frac{1}{51} a^{11} - \frac{8}{51} a^{9} + \frac{7}{51} a^{8} + \frac{4}{17} a^{7} + \frac{4}{51} a^{6} + \frac{1}{51} a^{5} - \frac{1}{17} a^{4} + \frac{16}{51} a^{3} + \frac{22}{51} a^{2} + \frac{7}{17} a - \frac{8}{51}$, $\frac{1}{153} a^{12} + \frac{7}{51} a^{9} + \frac{5}{51} a^{8} - \frac{8}{51} a^{7} + \frac{65}{153} a^{6} - \frac{7}{17} a^{5} - \frac{10}{51} a^{4} - \frac{2}{51} a^{3} - \frac{4}{17} a^{2} + \frac{10}{51} a - \frac{29}{153}$, $\frac{1}{153} a^{13} - \frac{1}{17} a^{9} - \frac{40}{153} a^{7} - \frac{3}{17} a^{6} + \frac{1}{3} a^{5} + \frac{4}{51} a^{3} - \frac{2}{17} a^{2} + \frac{37}{153} a - \frac{5}{17}$, $\frac{1}{1071} a^{14} + \frac{1}{357} a^{13} - \frac{2}{1071} a^{12} + \frac{2}{357} a^{11} + \frac{1}{119} a^{10} + \frac{31}{357} a^{9} - \frac{8}{63} a^{8} + \frac{157}{357} a^{7} + \frac{467}{1071} a^{6} + \frac{101}{357} a^{5} - \frac{2}{17} a^{4} + \frac{106}{357} a^{3} - \frac{362}{1071} a^{2} + \frac{44}{119} a + \frac{1}{1071}$, $\frac{1}{269620600702790069976261737129859} a^{15} - \frac{13483707952303610717770184615}{89873533567596689992087245709953} a^{14} + \frac{154904100191490025667826357611}{89873533567596689992087245709953} a^{13} - \frac{868779056695984336602419912468}{269620600702790069976261737129859} a^{12} - \frac{716602758250764201960492622457}{89873533567596689992087245709953} a^{11} - \frac{243309364875303237712771438072}{89873533567596689992087245709953} a^{10} - \frac{8706524507337123433223233224445}{269620600702790069976261737129859} a^{9} + \frac{1484943858476781290417134956213}{29957844522532229997362415236651} a^{8} - \frac{700441810892528725383259091531}{4279692074647461428194630748093} a^{7} + \frac{10427458363148034181861237952864}{38517228671827152853751676732837} a^{6} + \frac{24943557047908967918782266179150}{89873533567596689992087245709953} a^{5} - \frac{39294489739459996192186743614570}{89873533567596689992087245709953} a^{4} - \frac{112750297226578947242949874477394}{269620600702790069976261737129859} a^{3} + \frac{4525758375803892337246512612715}{29957844522532229997362415236651} a^{2} + \frac{36830063350803986326915572593030}{89873533567596689992087245709953} a + \frac{89911392633446366238014183803477}{269620600702790069976261737129859}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{170}$, which has order $1360$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9072.35800888 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4):C_4$ (as 16T120):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times D_4):C_4$ |
| Character table for $(C_2\times D_4):C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), 4.4.9792.1, 4.4.4352.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.1534132224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |