Normalized defining polynomial
\( x^{16} - 8 x^{15} + 168 x^{14} - 856 x^{13} + 9606 x^{12} - 34032 x^{11} + 243628 x^{10} - 535048 x^{9} + 2701602 x^{8} - 1786640 x^{7} + 9946672 x^{6} + 21942216 x^{5} + 5432442 x^{4} + 95409688 x^{3} + 73950516 x^{2} + 33597560 x + 246399481 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4074443918442233856000000000000=2^{40}\cdot 3^{12}\cdot 5^{12}\cdot 13^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{70} a^{12} + \frac{1}{5} a^{11} - \frac{4}{35} a^{10} - \frac{1}{7} a^{9} - \frac{8}{35} a^{8} - \frac{16}{35} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{9}{70} a^{4} - \frac{12}{35} a^{3} - \frac{1}{5} a^{2} - \frac{1}{35} a - \frac{2}{35}$, $\frac{1}{70} a^{13} + \frac{3}{35} a^{11} - \frac{3}{70} a^{10} - \frac{8}{35} a^{9} + \frac{17}{70} a^{8} + \frac{1}{5} a^{7} + \frac{1}{14} a^{5} + \frac{16}{35} a^{4} - \frac{2}{5} a^{3} + \frac{19}{70} a^{2} + \frac{12}{35} a + \frac{3}{10}$, $\frac{1}{70} a^{14} - \frac{17}{70} a^{11} - \frac{3}{70} a^{10} + \frac{1}{10} a^{9} + \frac{1}{14} a^{8} - \frac{9}{35} a^{7} + \frac{19}{70} a^{6} + \frac{9}{35} a^{5} + \frac{13}{35} a^{4} + \frac{23}{70} a^{3} + \frac{3}{70} a^{2} + \frac{33}{70} a - \frac{11}{70}$, $\frac{1}{15144531222874667417472525667690242655388456868966539039350} a^{15} + \frac{5629924242591241187685111337665795680792882872705522177}{1514453122287466741747252566769024265538845686896653903935} a^{14} - \frac{27392335298649041785925990247848191295714845957893350801}{7572265611437333708736262833845121327694228434483269519675} a^{13} + \frac{82384652531773349158274559883171688346161482519957170553}{15144531222874667417472525667690242655388456868966539039350} a^{12} - \frac{575720135662188825031165173492601755746868484814698748117}{3028906244574933483494505133538048531077691373793307807870} a^{11} - \frac{112653392255837703612180274583026296213952327720054744387}{15144531222874667417472525667690242655388456868966539039350} a^{10} + \frac{1372028643392662061099680106585126498097031713475368777931}{7572265611437333708736262833845121327694228434483269519675} a^{9} + \frac{1403730858068770230128611388768195260661513703234990643213}{15144531222874667417472525667690242655388456868966539039350} a^{8} + \frac{257748784355218350162372918052145073630223839663965803403}{2163504460410666773924646523955748950769779552709505577050} a^{7} + \frac{2284531295745490782260740933370185301744133169059268466024}{7572265611437333708736262833845121327694228434483269519675} a^{6} + \frac{245509288700673180768581867291379176982858486938379073314}{1081752230205333386962323261977874475384889776354752788525} a^{5} - \frac{6230229944513942301808354388396312953563532578117657365911}{15144531222874667417472525667690242655388456868966539039350} a^{4} + \frac{840789425893413035455771340368467632883358310718246372209}{15144531222874667417472525667690242655388456868966539039350} a^{3} + \frac{658144474176256988639106553709464599660055227216141043201}{3028906244574933483494505133538048531077691373793307807870} a^{2} + \frac{3657706982697914569258468740144620257317858607217526725863}{7572265611437333708736262833845121327694228434483269519675} a - \frac{7113317394142119964367202819326649437924081412277354461867}{15144531222874667417472525667690242655388456868966539039350}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{30}\times C_{30}$, which has order $28800$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15197.4244561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.C_2^3$ (as 16T20):
| A solvable group of order 32 |
| The 17 conjugacy class representatives for $(C_2 \times Q_8):C_2$ |
| Character table for $(C_2 \times Q_8):C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |