Normalized defining polynomial
\( x^{16} - 5 x^{15} + 10 x^{14} - 6 x^{13} - 12 x^{12} + 27 x^{11} - 16 x^{10} - 14 x^{9} + 32 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(4045039500390625\)
\(\medspace = 5^{8}\cdot 11^{4}\cdot 29^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.45\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}11^{1/2}29^{1/2}\approx 39.93745109543172$ | ||
Ramified primes: |
\(5\), \(11\), \(29\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{67}a^{15}-\frac{3}{67}a^{14}+\frac{4}{67}a^{13}+\frac{2}{67}a^{12}-\frac{8}{67}a^{11}+\frac{11}{67}a^{10}+\frac{6}{67}a^{9}-\frac{2}{67}a^{8}+\frac{28}{67}a^{7}+\frac{29}{67}a^{6}+\frac{7}{67}a^{5}+\frac{3}{67}a^{4}+\frac{14}{67}a^{3}+\frac{25}{67}a^{2}-\frac{17}{67}a+\frac{33}{67}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{4}{67}a^{15}-\frac{12}{67}a^{14}+\frac{16}{67}a^{13}+\frac{8}{67}a^{12}-\frac{32}{67}a^{11}-\frac{23}{67}a^{10}+\frac{91}{67}a^{9}-\frac{8}{67}a^{8}-\frac{156}{67}a^{7}+\frac{116}{67}a^{6}+\frac{95}{67}a^{5}-\frac{189}{67}a^{4}+\frac{123}{67}a^{3}-\frac{101}{67}a^{2}+\frac{66}{67}a-\frac{2}{67}$, $\frac{70}{67}a^{15}-\frac{344}{67}a^{14}+\frac{548}{67}a^{13}+\frac{6}{67}a^{12}-\frac{1163}{67}a^{11}+\frac{1373}{67}a^{10}+\frac{85}{67}a^{9}-\frac{1547}{67}a^{8}+\frac{1491}{67}a^{7}-\frac{650}{67}a^{6}+\frac{289}{67}a^{5}-\frac{259}{67}a^{4}+\frac{176}{67}a^{3}-\frac{59}{67}a^{2}-\frac{51}{67}a-\frac{102}{67}$, $\frac{117}{67}a^{15}-\frac{418}{67}a^{14}+\frac{468}{67}a^{13}+\frac{301}{67}a^{12}-\frac{1271}{67}a^{11}+\frac{952}{67}a^{10}+\frac{568}{67}a^{9}-\frac{1440}{67}a^{8}+\frac{998}{67}a^{7}-\frac{426}{67}a^{6}+\frac{417}{67}a^{5}-\frac{453}{67}a^{4}+\frac{298}{67}a^{3}-\frac{23}{67}a^{2}+\frac{21}{67}a-\frac{92}{67}$, $\frac{92}{67}a^{15}-\frac{343}{67}a^{14}+\frac{368}{67}a^{13}+\frac{318}{67}a^{12}-\frac{1138}{67}a^{11}+\frac{744}{67}a^{10}+\frac{686}{67}a^{9}-\frac{1390}{67}a^{8}+\frac{767}{67}a^{7}-\frac{79}{67}a^{6}+\frac{108}{67}a^{5}-\frac{260}{67}a^{4}+\frac{149}{67}a^{3}+\frac{89}{67}a^{2}-\frac{23}{67}a-\frac{113}{67}$, $\frac{26}{67}a^{15}-\frac{11}{67}a^{14}-\frac{164}{67}a^{13}+\frac{320}{67}a^{12}-\frac{7}{67}a^{11}-\frac{585}{67}a^{10}+\frac{558}{67}a^{9}+\frac{149}{67}a^{8}-\frac{545}{67}a^{7}+\frac{352}{67}a^{6}-\frac{220}{67}a^{5}+\frac{279}{67}a^{4}-\frac{172}{67}a^{3}+\frac{47}{67}a^{2}+\frac{94}{67}a-\frac{13}{67}$, $\frac{71}{67}a^{15}-\frac{414}{67}a^{14}+\frac{820}{67}a^{13}-\frac{394}{67}a^{12}-\frac{1171}{67}a^{11}+\frac{2188}{67}a^{10}-\frac{914}{67}a^{9}-\frac{1482}{67}a^{8}+\frac{2457}{67}a^{7}-\frac{1760}{67}a^{6}+\frac{1033}{67}a^{5}-\frac{792}{67}a^{4}+\frac{525}{67}a^{3}-\frac{168}{67}a^{2}-\frac{135}{67}a-\frac{69}{67}$, $\frac{26}{67}a^{15}-\frac{212}{67}a^{14}+\frac{506}{67}a^{13}-\frac{350}{67}a^{12}-\frac{610}{67}a^{11}+\frac{1425}{67}a^{10}-\frac{782}{67}a^{9}-\frac{789}{67}a^{8}+\frac{1599}{67}a^{7}-\frac{1256}{67}a^{6}+\frac{718}{67}a^{5}-\frac{391}{67}a^{4}+\frac{163}{67}a^{3}-\frac{20}{67}a^{2}-\frac{107}{67}a-\frac{13}{67}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 8.56826776068 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 8.56826776068 \cdot 1}{2\cdot\sqrt{4045039500390625}}\cr\approx \mathstrut & 0.163621585847 \end{aligned}\]
Galois group
$C_2\wr D_4$ (as 16T388):
A solvable group of order 128 |
The 20 conjugacy class representatives for $C_2\wr D_4$ |
Character table for $C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.4.725.1, 4.2.275.1, 4.2.7975.1, 8.2.5781875.1 x2, 8.0.2193125.1 x2, 8.4.63600625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 8 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 8.0.2193125.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{8}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(11\)
| 11.4.2.1 | $x^{4} + 14 x^{3} + 75 x^{2} + 182 x + 620$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
11.4.2.1 | $x^{4} + 14 x^{3} + 75 x^{2} + 182 x + 620$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(29\)
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |