Normalized defining polynomial
\( x^{16} + 42 x^{14} - 52 x^{13} + 756 x^{12} - 1472 x^{11} + 7508 x^{10} - 16676 x^{9} + 46796 x^{8} - 95208 x^{7} + 178960 x^{6} - 290664 x^{5} + 366131 x^{4} - 393256 x^{3} + 422098 x^{2} - 242772 x + 311609 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4039286225255792640000000000=2^{32}\cdot 3^{4}\cdot 5^{10}\cdot 29^{4}\cdot 41^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{4} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{405} a^{14} + \frac{7}{135} a^{13} - \frac{4}{405} a^{12} + \frac{167}{405} a^{11} - \frac{107}{405} a^{10} + \frac{164}{405} a^{9} - \frac{38}{405} a^{8} + \frac{101}{405} a^{7} + \frac{31}{405} a^{6} - \frac{10}{81} a^{5} + \frac{1}{135} a^{4} - \frac{166}{405} a^{3} + \frac{86}{405} a^{2} + \frac{1}{15} a + \frac{83}{405}$, $\frac{1}{48574572372830537117049032392183979715} a^{15} - \frac{498583202411055502661387923688768}{5397174708092281901894336932464886635} a^{14} - \frac{325315158693455881322908435154600491}{48574572372830537117049032392183979715} a^{13} + \frac{3281254240404714110151906375910400732}{48574572372830537117049032392183979715} a^{12} - \frac{10985401904711039354097712292427982463}{48574572372830537117049032392183979715} a^{11} - \frac{4159971486562165774489633705878622439}{9714914474566107423409806478436795943} a^{10} + \frac{20837208886823163752244645058772639317}{48574572372830537117049032392183979715} a^{9} - \frac{1735917645000072473364739552644637190}{9714914474566107423409806478436795943} a^{8} - \frac{2374721559511978748273606051295648113}{48574572372830537117049032392183979715} a^{7} + \frac{3092763730849788895161625189873488766}{6939224624690076731007004627454854245} a^{6} - \frac{152620925360213847405381708024280949}{5397174708092281901894336932464886635} a^{5} + \frac{12690228239287267054467408711445207292}{48574572372830537117049032392183979715} a^{4} - \frac{6600665853822752981216425603468234531}{48574572372830537117049032392183979715} a^{3} - \frac{1137432609193444456107839010726387887}{2313074874896692243669001542484951415} a^{2} - \frac{11622365476515706995776664007605935719}{48574572372830537117049032392183979715} a + \frac{5103473439187366266288152972572399981}{16191524124276845705683010797394659905}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{148}$, which has order $1184$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9192.49654065 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n799 are not computed |
| Character table for t16n799 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), 4.4.725.1, 4.4.46400.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.2152960000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41 | Data not computed | ||||||