Normalized defining polynomial
\( x^{16} - x^{14} + 54 x^{12} + 163 x^{10} + 234 x^{8} - 3229 x^{6} + 16021 x^{4} - 26208 x^{2} + 20736 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(40291974979216000000000000=2^{16}\cdot 5^{12}\cdot 17^{8}\cdot 19^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{7} - \frac{1}{4} a^{6} - \frac{1}{6} a^{5} - \frac{1}{4} a^{4} + \frac{1}{3} a^{3} + \frac{1}{4} a^{2} - \frac{5}{12} a$, $\frac{1}{12} a^{8} + \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{5}{12} a^{4} - \frac{1}{4} a^{3} + \frac{1}{3} a^{2} + \frac{1}{4} a$, $\frac{1}{12} a^{9} - \frac{1}{4} a^{5} + \frac{5}{12} a$, $\frac{1}{12} a^{10} - \frac{1}{4} a^{6} + \frac{5}{12} a^{2}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{24} a^{7} - \frac{1}{8} a^{6} - \frac{1}{24} a^{5} + \frac{1}{4} a^{4} + \frac{1}{24} a^{3} + \frac{1}{24} a^{2} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{72} a^{12} - \frac{1}{36} a^{10} - \frac{1}{24} a^{9} - \frac{1}{72} a^{8} - \frac{2}{9} a^{6} - \frac{1}{8} a^{5} - \frac{29}{72} a^{4} - \frac{1}{4} a^{3} - \frac{7}{36} a^{2} - \frac{11}{24} a - \frac{1}{2}$, $\frac{1}{72} a^{13} + \frac{1}{72} a^{11} + \frac{1}{36} a^{9} - \frac{1}{72} a^{7} - \frac{1}{4} a^{6} - \frac{7}{36} a^{5} + \frac{1}{4} a^{4} - \frac{11}{72} a^{3} - \frac{1}{4} a^{2} - \frac{11}{24} a - \frac{1}{2}$, $\frac{1}{247089161664} a^{14} - \frac{1312656049}{247089161664} a^{12} - \frac{558124621}{13727175648} a^{10} - \frac{1698625709}{247089161664} a^{8} + \frac{344479573}{13727175648} a^{6} - \frac{1}{4} a^{5} - \frac{45142346221}{247089161664} a^{4} - \frac{1}{4} a^{3} + \frac{7990057621}{247089161664} a^{2} + \frac{1}{4} a - \frac{754062049}{1715896956}$, $\frac{1}{5930139879936} a^{15} - \frac{1}{494178323328} a^{14} - \frac{1312656049}{5930139879936} a^{13} + \frac{1312656049}{494178323328} a^{12} + \frac{585806683}{329452215552} a^{11} - \frac{585806683}{27454351296} a^{10} + \frac{142436718595}{5930139879936} a^{9} - \frac{18892137763}{494178323328} a^{8} - \frac{647794345}{109817405184} a^{7} - \frac{1640068263}{9151450432} a^{6} - \frac{642274486909}{5930139879936} a^{5} - \frac{222537578915}{494178323328} a^{4} - \frac{1412772621947}{5930139879936} a^{3} + \frac{177326813627}{494178323328} a^{2} - \frac{19628928565}{41181526944} a - \frac{961834907}{3431793912}$
Class group and class number
$C_{2}\times C_{16}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 108588.634681 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^6.C_2^2$ (as 16T528):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^6.C_2^2$ |
| Character table for $C_2^6.C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{85}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{5}, \sqrt{17})\), 8.0.15868990000.1, 8.0.1586899000000.3, 8.8.83521000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.16.14 | $x^{8} + 2 x^{6} + 4 x^{5} + 6 x^{4} + 8 x^{2} + 12$ | $4$ | $2$ | $16$ | $C_2^2:C_4$ | $[2, 2, 3]^{2}$ | |
| 5 | Data not computed | ||||||
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |