Properties

Label 16.0.40257364486...0113.1
Degree $16$
Signature $[0, 8]$
Discriminant $3^{8}\cdot 11^{8}\cdot 17^{15}$
Root discriminant $81.81$
Ramified primes $3, 11, 17$
Class number $56132$ (GRH)
Class group $[2, 28066]$ (GRH)
Galois group $C_{16}$ (as 16T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![941032009, -655819337, 655819337, -228000329, 228000329, -40829513, 40829513, -4063817, 4063817, -234057, 234057, -7753, 7753, -137, 137, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + 137*x^14 - 137*x^13 + 7753*x^12 - 7753*x^11 + 234057*x^10 - 234057*x^9 + 4063817*x^8 - 4063817*x^7 + 40829513*x^6 - 40829513*x^5 + 228000329*x^4 - 228000329*x^3 + 655819337*x^2 - 655819337*x + 941032009)
 
gp: K = bnfinit(x^16 - x^15 + 137*x^14 - 137*x^13 + 7753*x^12 - 7753*x^11 + 234057*x^10 - 234057*x^9 + 4063817*x^8 - 4063817*x^7 + 40829513*x^6 - 40829513*x^5 + 228000329*x^4 - 228000329*x^3 + 655819337*x^2 - 655819337*x + 941032009, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} + 137 x^{14} - 137 x^{13} + 7753 x^{12} - 7753 x^{11} + 234057 x^{10} - 234057 x^{9} + 4063817 x^{8} - 4063817 x^{7} + 40829513 x^{6} - 40829513 x^{5} + 228000329 x^{4} - 228000329 x^{3} + 655819337 x^{2} - 655819337 x + 941032009 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4025736448695106798281569680113=3^{8}\cdot 11^{8}\cdot 17^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $81.81$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 11, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(561=3\cdot 11\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{561}(1,·)$, $\chi_{561}(131,·)$, $\chi_{561}(197,·)$, $\chi_{561}(65,·)$, $\chi_{561}(329,·)$, $\chi_{561}(331,·)$, $\chi_{561}(463,·)$, $\chi_{561}(529,·)$, $\chi_{561}(67,·)$, $\chi_{561}(100,·)$, $\chi_{561}(164,·)$, $\chi_{561}(166,·)$, $\chi_{561}(296,·)$, $\chi_{561}(298,·)$, $\chi_{561}(428,·)$, $\chi_{561}(362,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{164643641} a^{9} + \frac{21415099}{164643641} a^{8} + \frac{72}{164643641} a^{7} + \frac{53417208}{164643641} a^{6} + \frac{1728}{164643641} a^{5} + \frac{80482314}{164643641} a^{4} + \frac{15360}{164643641} a^{3} - \frac{77630298}{164643641} a^{2} + \frac{36864}{164643641} a - \frac{77630298}{164643641}$, $\frac{1}{164643641} a^{10} + \frac{80}{164643641} a^{8} - \frac{6677151}{164643641} a^{7} + \frac{2240}{164643641} a^{6} - \frac{44633174}{164643641} a^{5} + \frac{25600}{164643641} a^{4} - \frac{55556220}{164643641} a^{3} + \frac{102400}{164643641} a^{2} - \frac{57581239}{164643641} a + \frac{65536}{164643641}$, $\frac{1}{164643641} a^{11} - \frac{73448661}{164643641} a^{8} - \frac{3520}{164643641} a^{7} - \frac{37275148}{164643641} a^{6} - \frac{112640}{164643641} a^{5} - \frac{73039341}{164643641} a^{4} - \frac{1126400}{164643641} a^{3} + \frac{61027884}{164643641} a^{2} - \frac{2883584}{164643641} a - \frac{46034518}{164643641}$, $\frac{1}{164643641} a^{12} - \frac{4224}{164643641} a^{8} - \frac{17568068}{164643641} a^{7} - \frac{157696}{164643641} a^{6} + \frac{70643297}{164643641} a^{5} - \frac{2027520}{164643641} a^{4} - \frac{70410929}{164643641} a^{3} - \frac{8650752}{164643641} a^{2} + \frac{728341}{164643641} a - \frac{5767168}{164643641}$, $\frac{1}{164643641} a^{13} + \frac{50451199}{164643641} a^{8} + \frac{146432}{164643641} a^{7} - \frac{21501922}{164643641} a^{6} + \frac{5271552}{164643641} a^{5} + \frac{62408383}{164643641} a^{4} + \frac{56229888}{164643641} a^{3} + \frac{60482461}{164643641} a^{2} - \frac{14697273}{164643641} a + \frac{59754120}{164643641}$, $\frac{1}{164643641} a^{14} + \frac{186368}{164643641} a^{8} - \frac{31828148}{164643641} a^{7} + \frac{7827456}{164643641} a^{6} - \frac{20777400}{164643641} a^{5} - \frac{57295673}{164643641} a^{4} - \frac{56959633}{164643641} a^{3} - \frac{16828843}{164643641} a^{2} + \frac{41322920}{164643641} a - \frac{2131570}{164643641}$, $\frac{1}{164643641} a^{15} + \frac{5502901}{164643641} a^{8} - \frac{5591040}{164643641} a^{7} + \frac{63398762}{164643641} a^{6} - \frac{50052295}{164643641} a^{5} - \frac{19872803}{164643641} a^{4} - \frac{80499426}{164643641} a^{3} - \frac{50608650}{164643641} a^{2} + \frac{42631400}{164643641} a + \frac{72712071}{164643641}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{28066}$, which has order $56132$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3640.012213375973 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{16}$ (as 16T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 16
The 16 conjugacy class representatives for $C_{16}$
Character table for $C_{16}$

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R $16$ $16$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ $16$ $16$ $16$ $16$ $16$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
11Data not computed
17Data not computed