Normalized defining polynomial
\( x^{16} - 7 x^{15} + 15 x^{14} + 15 x^{13} + 702 x^{12} + 2439 x^{11} - 3698 x^{10} - 4348 x^{9} + 70051 x^{8} + 68003 x^{7} - 281102 x^{6} - 230649 x^{5} + 755793 x^{4} + 624720 x^{3} - 788730 x^{2} - 457257 x + 444313 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4021928999000637617913142677617=17^{13}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{67} a^{14} - \frac{33}{67} a^{13} - \frac{33}{67} a^{12} + \frac{18}{67} a^{11} - \frac{18}{67} a^{10} - \frac{1}{67} a^{9} - \frac{27}{67} a^{8} + \frac{7}{67} a^{7} - \frac{5}{67} a^{6} + \frac{17}{67} a^{5} + \frac{31}{67} a^{4} - \frac{29}{67} a^{3} - \frac{30}{67} a^{2} - \frac{2}{67} a + \frac{24}{67}$, $\frac{1}{795847859839655459453807697852371141358160669} a^{15} - \frac{4264141433552657696306689068872776219586394}{795847859839655459453807697852371141358160669} a^{14} - \frac{105113150060320693363899203001426462376328262}{795847859839655459453807697852371141358160669} a^{13} + \frac{269856608567917006744667887897997208707302584}{795847859839655459453807697852371141358160669} a^{12} - \frac{213801245235331728778633557320957297996982008}{795847859839655459453807697852371141358160669} a^{11} + \frac{52709577008511038007219268681092733204004084}{795847859839655459453807697852371141358160669} a^{10} - \frac{63680040969175804918157190761234518556216350}{795847859839655459453807697852371141358160669} a^{9} - \frac{50187570870799094328960347435817194946499}{11878326266263514320206085042572703602360607} a^{8} + \frac{204188270386434525008506496760922764616974968}{795847859839655459453807697852371141358160669} a^{7} - \frac{10553815724987198464028162219990348180201090}{34602080862593715628426421645755267015572203} a^{6} + \frac{192111100598790469169476723231451025671341557}{795847859839655459453807697852371141358160669} a^{5} - \frac{189685489394710825134776784344527485311445748}{795847859839655459453807697852371141358160669} a^{4} + \frac{195490856238855024447378583037210311459213120}{795847859839655459453807697852371141358160669} a^{3} + \frac{7341788493842866046606399342480996293478357}{34602080862593715628426421645755267015572203} a^{2} - \frac{13355887501047723022559242042121937677609650}{41886729465245024181779352518545849545166351} a - \frac{43684905295992342487410169953806652647537352}{795847859839655459453807697852371141358160669}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33718131.2216 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-67}) \), 4.0.76313.1, 8.0.28611710209697.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |