Properties

Label 16.0.40144896000...0000.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 3^{4}\cdot 5^{12}\cdot 11^{2}$
Root discriminant $16.80$
Ramified primes $2, 3, 5, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T781

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![775, -3700, 8250, -11450, 11145, -8400, 5720, -4090, 2891, -1658, 646, -134, 9, -12, 14, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 14*x^14 - 12*x^13 + 9*x^12 - 134*x^11 + 646*x^10 - 1658*x^9 + 2891*x^8 - 4090*x^7 + 5720*x^6 - 8400*x^5 + 11145*x^4 - 11450*x^3 + 8250*x^2 - 3700*x + 775)
 
gp: K = bnfinit(x^16 - 6*x^15 + 14*x^14 - 12*x^13 + 9*x^12 - 134*x^11 + 646*x^10 - 1658*x^9 + 2891*x^8 - 4090*x^7 + 5720*x^6 - 8400*x^5 + 11145*x^4 - 11450*x^3 + 8250*x^2 - 3700*x + 775, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 14 x^{14} - 12 x^{13} + 9 x^{12} - 134 x^{11} + 646 x^{10} - 1658 x^{9} + 2891 x^{8} - 4090 x^{7} + 5720 x^{6} - 8400 x^{5} + 11145 x^{4} - 11450 x^{3} + 8250 x^{2} - 3700 x + 775 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(40144896000000000000=2^{24}\cdot 3^{4}\cdot 5^{12}\cdot 11^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.80$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{9} + \frac{2}{5} a^{4}$, $\frac{1}{12653277983005} a^{15} - \frac{954957223503}{12653277983005} a^{14} + \frac{42578544531}{2530655596601} a^{13} - \frac{396667730388}{12653277983005} a^{12} + \frac{5476213042783}{12653277983005} a^{11} + \frac{414649861194}{1150297998455} a^{10} + \frac{3598653878608}{12653277983005} a^{9} + \frac{5448812859928}{12653277983005} a^{8} + \frac{95568492692}{12653277983005} a^{7} + \frac{925948801622}{12653277983005} a^{6} + \frac{2498458765631}{12653277983005} a^{5} + \frac{3966413452756}{12653277983005} a^{4} + \frac{761913046908}{2530655596601} a^{3} + \frac{891957036107}{2530655596601} a^{2} - \frac{89668454138}{2530655596601} a + \frac{835199611978}{2530655596601}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{605071982296}{1150297998455} a^{15} + \frac{2980118959488}{1150297998455} a^{14} - \frac{5242657796204}{1150297998455} a^{13} + \frac{1497006569828}{1150297998455} a^{12} - \frac{736716307708}{230059599691} a^{11} + \frac{77285348227088}{1150297998455} a^{10} - \frac{307704495339036}{1150297998455} a^{9} + \frac{668709424776877}{1150297998455} a^{8} - \frac{203694592672324}{230059599691} a^{7} + \frac{1359798010830576}{1150297998455} a^{6} - \frac{1974855600180788}{1150297998455} a^{5} + \frac{585267736988784}{230059599691} a^{4} - \frac{708392752044656}{230059599691} a^{3} + \frac{608468414007708}{230059599691} a^{2} - \frac{329672926130232}{230059599691} a + \frac{85437142409424}{230059599691} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5895.60769507 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T781:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 62 conjugacy class representatives for t16n781 are not computed
Character table for t16n781 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.2.400.1, 4.2.2000.1, 8.0.4000000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.0.1$x^{8} - x^{3} + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
3.8.4.2$x^{8} - 27 x^{2} + 162$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$11$11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$