Normalized defining polynomial
\( x^{16} - 6 x^{15} + 18 x^{14} - 26 x^{13} + 2 x^{12} + 40 x^{11} + 52 x^{10} - 438 x^{9} + 855 x^{8} - 428 x^{7} - 1188 x^{6} + 2530 x^{5} - 1258 x^{4} - 1226 x^{3} + 1758 x^{2} - 776 x + 121 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(40144896000000000000=2^{24}\cdot 3^{4}\cdot 5^{12}\cdot 11^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{22} a^{12} - \frac{5}{22} a^{11} - \frac{1}{11} a^{10} - \frac{5}{22} a^{9} - \frac{3}{22} a^{8} + \frac{5}{22} a^{7} - \frac{2}{11} a^{6} - \frac{1}{2} a^{5} + \frac{7}{22} a^{4} + \frac{9}{22} a^{3} + \frac{4}{11} a^{2} - \frac{7}{22} a$, $\frac{1}{22} a^{13} - \frac{5}{22} a^{11} - \frac{2}{11} a^{10} + \frac{5}{22} a^{9} + \frac{1}{22} a^{8} - \frac{1}{22} a^{7} + \frac{1}{11} a^{6} + \frac{7}{22} a^{5} - \frac{1}{2} a^{4} + \frac{9}{22} a^{3} - \frac{1}{11} a - \frac{1}{2}$, $\frac{1}{242} a^{14} - \frac{1}{121} a^{13} - \frac{5}{242} a^{12} - \frac{30}{121} a^{11} + \frac{12}{121} a^{10} - \frac{21}{121} a^{9} + \frac{26}{121} a^{8} + \frac{46}{121} a^{7} + \frac{40}{121} a^{6} + \frac{48}{121} a^{5} + \frac{32}{121} a^{4} + \frac{35}{121} a^{3} + \frac{97}{242} a^{2} + \frac{2}{121} a - \frac{1}{2}$, $\frac{1}{2088407362822} a^{15} + \frac{305480767}{1044203681411} a^{14} + \frac{20790809891}{1044203681411} a^{13} + \frac{5621664441}{1044203681411} a^{12} - \frac{89752497334}{1044203681411} a^{11} + \frac{477721326575}{2088407362822} a^{10} + \frac{186840773781}{1044203681411} a^{9} - \frac{335184435763}{2088407362822} a^{8} - \frac{194074904702}{1044203681411} a^{7} + \frac{521912849889}{2088407362822} a^{6} - \frac{462516246124}{1044203681411} a^{5} + \frac{580611229019}{2088407362822} a^{4} + \frac{138247449913}{2088407362822} a^{3} - \frac{267081978859}{2088407362822} a^{2} + \frac{312033089353}{1044203681411} a + \frac{6305168391}{17259564982}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{7035381750811}{2088407362822} a^{15} - \frac{38505867612955}{2088407362822} a^{14} + \frac{106243905583479}{2088407362822} a^{13} - \frac{63215424857782}{1044203681411} a^{12} - \frac{26908585459021}{1044203681411} a^{11} + \frac{127070977825081}{1044203681411} a^{10} + \frac{501305295559019}{2088407362822} a^{9} - \frac{1410177711055551}{1044203681411} a^{8} + \frac{2259972466804898}{1044203681411} a^{7} - \frac{296545658573135}{1044203681411} a^{6} - \frac{8715202380650441}{2088407362822} a^{5} + \frac{6593370356079656}{1044203681411} a^{4} - \frac{1781635967897361}{2088407362822} a^{3} - \frac{9688798805620505}{2088407362822} a^{2} + \frac{3604890603878855}{1044203681411} a - \frac{6382576304202}{8629782491} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8357.0551607 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n781 are not computed |
| Character table for t16n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.2.400.1, 4.2.2000.1, 8.0.4000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |