Normalized defining polynomial
\( x^{16} - 6 x^{15} + 96 x^{14} - 446 x^{13} + 4135 x^{12} - 15442 x^{11} + 105440 x^{10} - 318139 x^{9} + 1747266 x^{8} - 4186200 x^{7} + 19309779 x^{6} - 35078044 x^{5} + 139303886 x^{4} - 173184835 x^{3} + 601821142 x^{2} - 389008031 x + 1198719131 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4009292695690170390860412175969=17^{14}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(799=17\cdot 47\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{799}(1,·)$, $\chi_{799}(706,·)$, $\chi_{799}(518,·)$, $\chi_{799}(140,·)$, $\chi_{799}(659,·)$, $\chi_{799}(281,·)$, $\chi_{799}(93,·)$, $\chi_{799}(798,·)$, $\chi_{799}(610,·)$, $\chi_{799}(424,·)$, $\chi_{799}(234,·)$, $\chi_{799}(236,·)$, $\chi_{799}(563,·)$, $\chi_{799}(565,·)$, $\chi_{799}(375,·)$, $\chi_{799}(189,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{84931405249464923861733741290369791467797099674} a^{15} - \frac{189628381398151009590775987494645762184100105}{3266592509594804763912836203475761210299888449} a^{14} + \frac{3460411585764627539008359128370952006939594175}{42465702624732461930866870645184895733898549837} a^{13} - \frac{1074529759271382383335999910119681831673829217}{6533185019189609527825672406951522420599776898} a^{12} + \frac{674096105675419406496736527496521382597375016}{42465702624732461930866870645184895733898549837} a^{11} + \frac{1835354996817904544140989936321578420058547980}{42465702624732461930866870645184895733898549837} a^{10} - \frac{20724093244451724972528486118710942864917144629}{84931405249464923861733741290369791467797099674} a^{9} - \frac{17243305451486833995334870699138555382694023203}{42465702624732461930866870645184895733898549837} a^{8} + \frac{8709796341684916776733005347135255930913605533}{42465702624732461930866870645184895733898549837} a^{7} - \frac{38564009747403388903707087579141842136671150847}{84931405249464923861733741290369791467797099674} a^{6} - \frac{9220478019170303924272579951882236755074896568}{42465702624732461930866870645184895733898549837} a^{5} + \frac{13071743542394954056291614730612218347502422161}{42465702624732461930866870645184895733898549837} a^{4} + \frac{3031217565088071564392869472400678531808963305}{84931405249464923861733741290369791467797099674} a^{3} - \frac{13470042619231721232063456364417118195269368187}{42465702624732461930866870645184895733898549837} a^{2} - \frac{15472953182260237109591395883599053167404161351}{42465702624732461930866870645184895733898549837} a + \frac{413839297214797775802532116436735312096728943}{42465702624732461930866870645184895733898549837}$
Class group and class number
$C_{4}\times C_{4}\times C_{6560}$, which has order $104960$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-799}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-47}) \), \(\Q(\sqrt{17}, \sqrt{-47})\), 4.4.4913.1, 4.0.10852817.2, 8.0.117783636835489.4, \(\Q(\zeta_{17})^+\), 8.0.2002321826203313.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $47$ | 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |