Normalized defining polynomial
\( x^{16} - 8 x^{15} + 64 x^{14} - 308 x^{13} + 1682 x^{12} - 6452 x^{11} + 25776 x^{10} - 76124 x^{9} + 281589 x^{8} - 729716 x^{7} + 1987704 x^{6} - 3669248 x^{5} + 6950160 x^{4} - 8513728 x^{3} + 13870848 x^{2} - 10122240 x + 82509824 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4009292695690170390860412175969=17^{14}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{16} a^{7} + \frac{3}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{2176} a^{8} - \frac{1}{544} a^{7} + \frac{29}{1088} a^{6} + \frac{7}{136} a^{5} - \frac{87}{2176} a^{4} + \frac{41}{544} a^{3} - \frac{57}{544} a^{2} - \frac{1}{136} a + \frac{2}{17}$, $\frac{1}{2176} a^{9} + \frac{21}{1088} a^{7} - \frac{1}{34} a^{6} - \frac{47}{2176} a^{5} - \frac{3}{136} a^{4} - \frac{63}{544} a^{3} + \frac{27}{136} a^{2} + \frac{3}{34} a + \frac{8}{17}$, $\frac{1}{4352} a^{10} - \frac{1}{4352} a^{9} - \frac{37}{2176} a^{7} + \frac{29}{4352} a^{6} - \frac{81}{4352} a^{5} + \frac{93}{2176} a^{4} + \frac{47}{1088} a^{3} - \frac{91}{544} a^{2} + \frac{47}{136} a + \frac{5}{17}$, $\frac{1}{4352} a^{11} - \frac{1}{4352} a^{9} - \frac{69}{4352} a^{7} - \frac{7}{272} a^{6} + \frac{233}{4352} a^{5} - \frac{5}{272} a^{4} - \frac{25}{1088} a^{3} - \frac{5}{68} a^{2} - \frac{9}{68} a - \frac{6}{17}$, $\frac{1}{193089536} a^{12} - \frac{3}{96544768} a^{11} + \frac{1509}{193089536} a^{10} - \frac{3745}{96544768} a^{9} + \frac{36375}{193089536} a^{8} - \frac{50313}{96544768} a^{7} - \frac{115953}{11358208} a^{6} + \frac{3117201}{96544768} a^{5} + \frac{2112529}{48272384} a^{4} - \frac{3424169}{24136192} a^{3} - \frac{556097}{3017024} a^{2} + \frac{393285}{1508512} a + \frac{10123}{47141}$, $\frac{1}{193089536} a^{13} + \frac{1473}{193089536} a^{11} + \frac{23}{2839552} a^{10} - \frac{8565}{193089536} a^{9} + \frac{3611}{24136192} a^{8} - \frac{130589}{11358208} a^{7} + \frac{332151}{48272384} a^{6} - \frac{17887}{12068096} a^{5} - \frac{323557}{12068096} a^{4} + \frac{924425}{12068096} a^{3} - \frac{174125}{1508512} a^{2} + \frac{12705}{44368} a + \frac{8051}{47141}$, $\frac{1}{386179072} a^{14} - \frac{1}{386179072} a^{13} - \frac{1}{386179072} a^{12} + \frac{8935}{386179072} a^{11} - \frac{15995}{386179072} a^{10} + \frac{74449}{386179072} a^{9} - \frac{50707}{386179072} a^{8} + \frac{10958573}{386179072} a^{7} - \frac{1217365}{193089536} a^{6} - \frac{4685481}{96544768} a^{5} + \frac{42137}{1027072} a^{4} + \frac{123929}{754256} a^{3} + \frac{36773}{177472} a^{2} + \frac{97335}{377128} a + \frac{585}{2773}$, $\frac{1}{52078951112704} a^{15} + \frac{67421}{52078951112704} a^{14} + \frac{101203}{52078951112704} a^{13} - \frac{17135}{52078951112704} a^{12} - \frac{1185332487}{52078951112704} a^{11} + \frac{4475051079}{52078951112704} a^{10} - \frac{11739904735}{52078951112704} a^{9} - \frac{7485817637}{52078951112704} a^{8} + \frac{569849240177}{26039475556352} a^{7} + \frac{1035857207}{95733366016} a^{6} + \frac{30792575357}{3254934444544} a^{5} - \frac{2435070743}{191466732032} a^{4} + \frac{2060219389}{27584190208} a^{3} + \frac{8842388027}{101716701392} a^{2} - \frac{3696900581}{101716701392} a + \frac{1396154377}{6357293837}$
Class group and class number
$C_{4}\times C_{12}\times C_{120}$, which has order $5760$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2668614326.25 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-799}) \), \(\Q(\sqrt{17}, \sqrt{-47})\), 4.2.230911.1 x2, 4.0.10852817.1 x2, 8.0.117783636835489.1, 8.2.42602592046879.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $47$ | 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |