Normalized defining polynomial
\( x^{16} - 4 x^{15} + 50 x^{14} - 268 x^{13} + 1684 x^{12} - 8130 x^{11} + 35104 x^{10} - 143816 x^{9} + 508573 x^{8} - 1352592 x^{7} + 4667230 x^{6} - 6549280 x^{5} + 14771709 x^{4} - 16343158 x^{3} + 37249515 x^{2} - 2357794 x + 47343743 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4009292695690170390860412175969=17^{14}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{34} a^{8} - \frac{1}{17} a^{7} + \frac{3}{17} a^{6} + \frac{7}{17} a^{5} - \frac{15}{34} a^{4} - \frac{7}{17} a^{3} - \frac{11}{34} a^{2} - \frac{15}{34} a + \frac{1}{34}$, $\frac{1}{34} a^{9} + \frac{1}{17} a^{7} - \frac{4}{17} a^{6} + \frac{13}{34} a^{5} - \frac{5}{17} a^{4} - \frac{5}{34} a^{3} - \frac{3}{34} a^{2} + \frac{5}{34} a + \frac{1}{17}$, $\frac{1}{34} a^{10} - \frac{2}{17} a^{7} + \frac{1}{34} a^{6} - \frac{2}{17} a^{5} - \frac{9}{34} a^{4} - \frac{9}{34} a^{3} - \frac{7}{34} a^{2} - \frac{1}{17} a - \frac{1}{17}$, $\frac{1}{34} a^{11} - \frac{7}{34} a^{7} - \frac{7}{17} a^{6} + \frac{13}{34} a^{5} - \frac{1}{34} a^{4} + \frac{5}{34} a^{3} - \frac{6}{17} a^{2} + \frac{3}{17} a + \frac{2}{17}$, $\frac{1}{2278} a^{12} + \frac{3}{2278} a^{11} - \frac{19}{2278} a^{10} + \frac{8}{1139} a^{9} + \frac{15}{1139} a^{8} + \frac{305}{2278} a^{7} + \frac{193}{1139} a^{6} + \frac{250}{1139} a^{5} - \frac{50}{1139} a^{4} - \frac{229}{1139} a^{3} - \frac{142}{1139} a^{2} - \frac{279}{2278} a - \frac{45}{134}$, $\frac{1}{2278} a^{13} - \frac{14}{1139} a^{11} + \frac{3}{1139} a^{10} - \frac{9}{1139} a^{9} + \frac{7}{1139} a^{8} + \frac{141}{2278} a^{7} + \frac{347}{2278} a^{6} + \frac{205}{1139} a^{5} - \frac{548}{1139} a^{4} - \frac{49}{2278} a^{3} + \frac{975}{2278} a^{2} + \frac{943}{2278} a - \frac{25}{1139}$, $\frac{1}{2278} a^{14} + \frac{23}{2278} a^{11} - \frac{7}{1139} a^{10} - \frac{7}{2278} a^{9} - \frac{12}{1139} a^{8} - \frac{414}{1139} a^{7} - \frac{488}{1139} a^{6} + \frac{556}{1139} a^{5} + \frac{769}{2278} a^{4} - \frac{593}{2278} a^{3} + \frac{227}{2278} a^{2} + \frac{558}{1139} a + \frac{355}{2278}$, $\frac{1}{152650193675367820480024131650735083327334} a^{15} - \frac{14744353719158186798291758481354385354}{76325096837683910240012065825367541663667} a^{14} + \frac{14562524341868136460892966904688683657}{76325096837683910240012065825367541663667} a^{13} + \frac{2140913943682241663039405730574055396}{76325096837683910240012065825367541663667} a^{12} + \frac{800596448057995191701558572593411336505}{76325096837683910240012065825367541663667} a^{11} - \frac{177492472520825714857514265823455153218}{76325096837683910240012065825367541663667} a^{10} + \frac{190468373454988051550707537107633860627}{152650193675367820480024131650735083327334} a^{9} + \frac{821099741036371262846855312812965556064}{76325096837683910240012065825367541663667} a^{8} - \frac{14840928800880598109238305751307676442856}{76325096837683910240012065825367541663667} a^{7} - \frac{12082406329107628614046231239857482554038}{76325096837683910240012065825367541663667} a^{6} + \frac{74044802069276707426677266269229261368917}{152650193675367820480024131650735083327334} a^{5} - \frac{14679778472900310497490117550617088687984}{76325096837683910240012065825367541663667} a^{4} - \frac{60138060323098979457238041339597563932219}{152650193675367820480024131650735083327334} a^{3} - \frac{40182479542672553895773601412270197855789}{152650193675367820480024131650735083327334} a^{2} + \frac{10381153867233970865855931649469872731193}{152650193675367820480024131650735083327334} a + \frac{18752141503014973193472354018816517951331}{152650193675367820480024131650735083327334}$
Class group and class number
$C_{4}\times C_{4}\times C_{80}$, which has order $1280$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 282136.204408 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-799}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-47}) \), \(\Q(\sqrt{17}, \sqrt{-47})\), 4.4.4913.1, 4.0.10852817.2, 8.0.117783636835489.4, 8.4.906438128657.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $47$ | 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |