Properties

Label 16.0.40092926956...969.10
Degree $16$
Signature $[0, 8]$
Discriminant $17^{14}\cdot 47^{8}$
Root discriminant $81.79$
Ramified primes $17, 47$
Class number $656$ (GRH)
Class group $[2, 2, 164]$ (GRH)
Galois group $C_2^5.C_2.C_2$ (as 16T258)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1723969, 0, 1349021, 0, 1250039, 0, -452838, 0, 108435, 0, -10558, 0, 1034, 0, -44, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 44*x^14 + 1034*x^12 - 10558*x^10 + 108435*x^8 - 452838*x^6 + 1250039*x^4 + 1349021*x^2 + 1723969)
 
gp: K = bnfinit(x^16 - 44*x^14 + 1034*x^12 - 10558*x^10 + 108435*x^8 - 452838*x^6 + 1250039*x^4 + 1349021*x^2 + 1723969, 1)
 

Normalized defining polynomial

\( x^{16} - 44 x^{14} + 1034 x^{12} - 10558 x^{10} + 108435 x^{8} - 452838 x^{6} + 1250039 x^{4} + 1349021 x^{2} + 1723969 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4009292695690170390860412175969=17^{14}\cdot 47^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $81.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{26} a^{13} + \frac{1}{13} a^{11} - \frac{5}{26} a^{9} - \frac{11}{26} a^{7} - \frac{1}{2} a^{6} + \frac{3}{26} a^{5} + \frac{6}{13} a^{3} + \frac{2}{13} a$, $\frac{1}{1150632227570890616751602} a^{14} + \frac{4198008355039616257908}{575316113785445308375801} a^{12} + \frac{37990853884299214571239}{1150632227570890616751602} a^{10} + \frac{78979578916447971553209}{1150632227570890616751602} a^{8} - \frac{1}{2} a^{7} - \frac{351947480626400525195937}{1150632227570890616751602} a^{6} - \frac{242260684511531153885450}{575316113785445308375801} a^{4} - \frac{247071622394891703247382}{575316113785445308375801} a^{2} + \frac{11462038646769890055122}{44255085675803485259677}$, $\frac{1}{116213854984659952291911802} a^{15} - \frac{832450611130186987418047}{116213854984659952291911802} a^{13} + \frac{14424025814416184059310483}{58106927492329976145955901} a^{11} + \frac{3707896604332333762846723}{116213854984659952291911802} a^{9} + \frac{6020784856689301352197551}{116213854984659952291911802} a^{7} - \frac{1}{2} a^{6} - \frac{55936143720804829338146181}{116213854984659952291911802} a^{5} - \frac{23702267030570738890876192}{58106927492329976145955901} a^{3} - \frac{20518118508192219045552573}{58106927492329976145955901} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{164}$, which has order $656$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 679760.803801 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^5.C_2.C_2$ (as 16T258):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 26 conjugacy class representatives for $C_2^5.C_2.C_2$
Character table for $C_2^5.C_2.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, 8.0.2002321826203313.5, 8.2.19285917631.1, 8.6.2506034826287.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
17Data not computed
47Data not computed