Normalized defining polynomial
\( x^{16} - 7 x^{15} + 24 x^{14} - 77 x^{13} + 248 x^{12} - 568 x^{11} + 752 x^{10} + 123 x^{9} - 2986 x^{8} + 3502 x^{7} + 9176 x^{6} - 23827 x^{5} + 1080 x^{4} + 39331 x^{3} - 19619 x^{2} + 5183 x + 37181 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(400734980167009195224860426161=13^{8}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{13} a^{11} - \frac{4}{13} a^{10} + \frac{1}{13} a^{9} + \frac{3}{13} a^{8} - \frac{4}{13} a^{7} - \frac{1}{13} a^{6} - \frac{5}{13} a^{5} - \frac{2}{13} a^{2} - \frac{6}{13} a + \frac{4}{13}$, $\frac{1}{13} a^{12} - \frac{2}{13} a^{10} - \frac{6}{13} a^{9} - \frac{5}{13} a^{8} - \frac{4}{13} a^{7} + \frac{4}{13} a^{6} + \frac{6}{13} a^{5} - \frac{2}{13} a^{3} - \frac{1}{13} a^{2} + \frac{6}{13} a + \frac{3}{13}$, $\frac{1}{13} a^{13} - \frac{1}{13} a^{10} - \frac{3}{13} a^{9} + \frac{2}{13} a^{8} - \frac{4}{13} a^{7} + \frac{4}{13} a^{6} + \frac{3}{13} a^{5} - \frac{2}{13} a^{4} - \frac{1}{13} a^{3} + \frac{2}{13} a^{2} + \frac{4}{13} a - \frac{5}{13}$, $\frac{1}{169} a^{14} - \frac{5}{169} a^{13} + \frac{4}{169} a^{12} - \frac{6}{169} a^{11} - \frac{12}{169} a^{10} - \frac{64}{169} a^{9} - \frac{49}{169} a^{8} - \frac{24}{169} a^{7} - \frac{74}{169} a^{6} - \frac{33}{169} a^{5} - \frac{17}{169} a^{4} - \frac{40}{169} a^{3} - \frac{3}{13} a^{2} + \frac{3}{169} a + \frac{17}{169}$, $\frac{1}{37315548897559812712541244523} a^{15} + \frac{71461358150815777856353517}{37315548897559812712541244523} a^{14} + \frac{745005912084538362830470710}{37315548897559812712541244523} a^{13} + \frac{964371895081290175597641714}{37315548897559812712541244523} a^{12} - \frac{677967036101984577444812401}{37315548897559812712541244523} a^{11} - \frac{3612032150049628693180281517}{37315548897559812712541244523} a^{10} - \frac{710928653945227505079156834}{2870426838273831747118557271} a^{9} - \frac{12133023114050540283806849437}{37315548897559812712541244523} a^{8} + \frac{18242450804011097311131370690}{37315548897559812712541244523} a^{7} - \frac{2778623524214327832569475188}{37315548897559812712541244523} a^{6} + \frac{4066009328830552051298462493}{37315548897559812712541244523} a^{5} + \frac{12278463456434639728848060735}{37315548897559812712541244523} a^{4} + \frac{14418785895088984971715819006}{37315548897559812712541244523} a^{3} - \frac{15321535013427732140756151444}{37315548897559812712541244523} a^{2} + \frac{15463526323052139305211763533}{37315548897559812712541244523} a - \frac{11393282453820930081578339114}{37315548897559812712541244523}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16858689.275 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.0.148877.1, 8.0.48695101400413.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |