Normalized defining polynomial
\( x^{16} - 2 x^{15} - 23 x^{14} + 75 x^{13} + 257 x^{12} - 1167 x^{11} - 975 x^{10} + 8314 x^{9} - 2631 x^{8} - 26244 x^{7} + 35757 x^{6} + 15701 x^{5} + 57683 x^{4} - 304085 x^{3} + 493567 x^{2} - 258800 x + 78949 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(400576787936788717495228433=17^{11}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{984864623754887442096425145758959641557263} a^{15} - \frac{386656367417620206557610477385090298415370}{984864623754887442096425145758959641557263} a^{14} - \frac{282890326118648939019511717660855009753865}{984864623754887442096425145758959641557263} a^{13} + \frac{104431630223725164720184127368743390850385}{984864623754887442096425145758959641557263} a^{12} - \frac{167614115202013954774792383496456394062005}{984864623754887442096425145758959641557263} a^{11} - \frac{10055552789133250657616011621286319451469}{75758817211914418622801934289150741658251} a^{10} + \frac{532638015058069879891537714230630053704}{1284047749354481671572914140494080367089} a^{9} + \frac{421841103933931043812837087681958505923714}{984864623754887442096425145758959641557263} a^{8} + \frac{471249491078702451896471609937341035743739}{984864623754887442096425145758959641557263} a^{7} - \frac{489655926965018811188494725466282636240048}{984864623754887442096425145758959641557263} a^{6} - \frac{128584279791791002974605238581822653484627}{984864623754887442096425145758959641557263} a^{5} + \frac{445094583992662258888358320994858627691478}{984864623754887442096425145758959641557263} a^{4} + \frac{348910370728190706526425370470284073066019}{984864623754887442096425145758959641557263} a^{3} + \frac{482125803907523936451461421545860437360213}{984864623754887442096425145758959641557263} a^{2} - \frac{88158405220898102169855465126333716994380}{984864623754887442096425145758959641557263} a - \frac{30623735171470127959275028248883590879536}{75758817211914418622801934289150741658251}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2382782.87662 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 4.0.31433.1, 8.0.16796569313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.4.2 | $x^{8} - 4913 x^{2} + 918731$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 17.8.7.6 | $x^{8} + 37179$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 43 | Data not computed | ||||||