Normalized defining polynomial
\( x^{16} - 2 x^{15} + 11 x^{14} - 23 x^{13} + 134 x^{12} - 398 x^{11} + 1262 x^{10} - 2534 x^{9} + 4956 x^{8} - 7225 x^{7} + 11867 x^{6} - 16384 x^{5} + 25069 x^{4} - 28760 x^{3} + 31185 x^{2} - 20529 x + 10141 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4001116390384599853515625=5^{12}\cdot 29^{8}\cdot 181^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{91} a^{14} - \frac{27}{91} a^{13} + \frac{40}{91} a^{12} + \frac{3}{7} a^{11} - \frac{18}{91} a^{10} - \frac{2}{7} a^{9} - \frac{19}{91} a^{8} - \frac{5}{91} a^{7} - \frac{2}{7} a^{6} + \frac{22}{91} a^{5} - \frac{6}{91} a^{4} + \frac{3}{7} a^{3} + \frac{33}{91} a^{2} + \frac{3}{91} a - \frac{36}{91}$, $\frac{1}{20456411003417472230864171} a^{15} - \frac{70534990186330671148778}{20456411003417472230864171} a^{14} + \frac{6529887877801075275819481}{20456411003417472230864171} a^{13} + \frac{6083916825840935333041602}{20456411003417472230864171} a^{12} - \frac{110214988141833304526999}{889409174061629227428877} a^{11} - \frac{7281852144778396745584826}{20456411003417472230864171} a^{10} - \frac{8532531136332539515452513}{20456411003417472230864171} a^{9} - \frac{5978463774493892147938194}{20456411003417472230864171} a^{8} + \frac{8452964229754403565437131}{20456411003417472230864171} a^{7} + \frac{1465522767250396517951817}{20456411003417472230864171} a^{6} + \frac{6217899143265387447501442}{20456411003417472230864171} a^{5} - \frac{5956482224179713225833720}{20456411003417472230864171} a^{4} + \frac{10225461221223092938164117}{20456411003417472230864171} a^{3} + \frac{209691840528891797158}{224795725312279914624881} a^{2} - \frac{373535687269685421131993}{2922344429059638890123453} a + \frac{6640911649164397217555665}{20456411003417472230864171}$
Class group and class number
$C_{2}\times C_{34}$, which has order $68$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3793.72993285 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4^2:C_2^2.C_2$ (as 16T406):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_4^2:C_2^2.C_2$ |
| Character table for $C_4^2:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), 4.4.4205.1 x2, 4.4.725.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $181$ | 181.4.0.1 | $x^{4} - x + 54$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 181.4.0.1 | $x^{4} - x + 54$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 181.4.2.2 | $x^{4} - 181 x^{2} + 589698$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 181.4.0.1 | $x^{4} - x + 54$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |