Normalized defining polynomial
\( x^{16} - 3 x^{15} - 15 x^{14} + 49 x^{13} - 256 x^{12} + 1132 x^{11} + 4741 x^{10} - 24954 x^{9} + 22141 x^{8} - 347359 x^{7} + 2771348 x^{6} - 9301087 x^{5} + 19361822 x^{4} - 31135328 x^{3} + 38788769 x^{2} - 27400483 x + 8278943 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3989956815365189429491572242763809=37^{6}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{165909809913308184536373147252381650587968311952668761} a^{15} + \frac{50138394460902643558837444707416263256867602935555271}{165909809913308184536373147252381650587968311952668761} a^{14} + \frac{48713631168004900130915683285368030205743826945445529}{165909809913308184536373147252381650587968311952668761} a^{13} - \frac{3270125382853277107168989316091359010473497569399072}{165909809913308184536373147252381650587968311952668761} a^{12} - \frac{5468886382049925743523564508876483990728634344228817}{165909809913308184536373147252381650587968311952668761} a^{11} - \frac{4982474966187079047386230177091687246925099743010959}{165909809913308184536373147252381650587968311952668761} a^{10} + \frac{31053933574713866023499267428665885899343306622144666}{165909809913308184536373147252381650587968311952668761} a^{9} + \frac{63923551530225313194225580973408347842860647931045601}{165909809913308184536373147252381650587968311952668761} a^{8} + \frac{62306184084757066883602084507638076267781434572514673}{165909809913308184536373147252381650587968311952668761} a^{7} - \frac{4103047200627196050441642889801427149298925456048898}{165909809913308184536373147252381650587968311952668761} a^{6} + \frac{36039254839220857437410213191431509411236509937737154}{165909809913308184536373147252381650587968311952668761} a^{5} + \frac{75966199140686245672170558304763257249339694584391758}{165909809913308184536373147252381650587968311952668761} a^{4} - \frac{61847611799676182080277782748408174482770901592752971}{165909809913308184536373147252381650587968311952668761} a^{3} - \frac{40708419124234902863204030016293371437468015621674396}{165909809913308184536373147252381650587968311952668761} a^{2} + \frac{69488881615889251975159843786525780966383482161669085}{165909809913308184536373147252381650587968311952668761} a - \frac{44829201172769695255182328827430024584148198516292809}{165909809913308184536373147252381650587968311952668761}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1165850711.88 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.0.194754273881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 41 | Data not computed | ||||||