Normalized defining polynomial
\( x^{16} + 1160 x^{14} + 545780 x^{12} + 133550800 x^{10} + 18086924450 x^{8} + 1329298056000 x^{6} + 47949554448000 x^{4} + 659978046720000 x^{2} + 2969901210240000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(398360031450580799831535291203584000000000000=2^{62}\cdot 5^{12}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $613.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4640=2^{5}\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4640}(1,·)$, $\chi_{4640}(1027,·)$, $\chi_{4640}(1161,·)$, $\chi_{4640}(2187,·)$, $\chi_{4640}(2321,·)$, $\chi_{4640}(4483,·)$, $\chi_{4640}(3481,·)$, $\chi_{4640}(4507,·)$, $\chi_{4640}(289,·)$, $\chi_{4640}(3347,·)$, $\chi_{4640}(1449,·)$, $\chi_{4640}(1003,·)$, $\chi_{4640}(2609,·)$, $\chi_{4640}(2163,·)$, $\chi_{4640}(3769,·)$, $\chi_{4640}(3323,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{145} a^{4}$, $\frac{1}{145} a^{5}$, $\frac{1}{145} a^{6}$, $\frac{1}{145} a^{7}$, $\frac{1}{42050} a^{8}$, $\frac{1}{252300} a^{9} - \frac{1}{435} a^{7} - \frac{1}{435} a^{5} + \frac{1}{3} a^{3} + \frac{1}{6} a$, $\frac{1}{1513800} a^{10} + \frac{1}{189225} a^{8} + \frac{1}{522} a^{6} + \frac{2}{1305} a^{4} + \frac{1}{36} a^{2}$, $\frac{1}{9082800} a^{11} + \frac{1}{1135350} a^{9} + \frac{41}{15660} a^{7} - \frac{8}{3915} a^{5} - \frac{71}{216} a^{3}$, $\frac{1}{134334612000} a^{12} - \frac{61}{231611400} a^{10} + \frac{437}{231611400} a^{8} + \frac{608}{199665} a^{6} + \frac{6913}{3194640} a^{4} - \frac{143}{612} a^{2} + \frac{8}{17}$, $\frac{1}{806007672000} a^{13} - \frac{61}{1389668400} a^{11} + \frac{437}{1389668400} a^{9} - \frac{3523}{1197990} a^{7} - \frac{59183}{19167840} a^{5} - \frac{143}{3672} a^{3} + \frac{4}{51} a$, $\frac{1}{6512741265484809936000} a^{14} - \frac{5957863189}{1628185316371202484000} a^{12} - \frac{118404098089}{1604123464405125600} a^{10} + \frac{12146201574341}{1403608031354484900} a^{8} + \frac{438369333015601}{154880886218425920} a^{6} + \frac{8100734836489}{4302246839400720} a^{4} + \frac{37397637523}{824185218276} a^{2} - \frac{8403429490}{22894033841}$, $\frac{1}{39076447592908859616000} a^{15} - \frac{5957863189}{9769111898227214904000} a^{13} - \frac{118404098089}{9624740786430753600} a^{11} + \frac{12146201574341}{8421648188126909400} a^{9} - \frac{1697918752755791}{929285317310555520} a^{7} - \frac{743790793843}{890120035738080} a^{5} - \frac{2435158017305}{4945111309656} a^{3} - \frac{27095748586}{68682101523} a$
Class group and class number
$C_{2}\times C_{18}\times C_{107858376}$, which has order $3882901536$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12166181.748695593 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.2 | $x^{8} + 24 x^{6} + 4 x^{4} + 16 x^{2} + 34$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.2 | $x^{8} + 24 x^{6} + 4 x^{4} + 16 x^{2} + 34$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| 5 | Data not computed | ||||||
| 29 | Data not computed | ||||||