Normalized defining polynomial
\( x^{16} + 25 x^{14} + 475 x^{12} + 4495 x^{10} + 21060 x^{8} - 8825 x^{6} + 9375 x^{4} - 775 x^{2} + 25 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3941366767857427978515625=5^{14}\cdot 71^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{20} a^{10} - \frac{1}{4}$, $\frac{1}{40} a^{11} - \frac{1}{40} a^{10} - \frac{1}{2} a^{4} - \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{80} a^{12} - \frac{1}{80} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{16} a^{2} - \frac{1}{2} a + \frac{1}{16}$, $\frac{1}{160} a^{13} - \frac{1}{160} a^{12} - \frac{1}{160} a^{11} + \frac{1}{160} a^{10} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{3}{8} a^{4} - \frac{1}{32} a^{3} - \frac{15}{32} a^{2} + \frac{1}{32} a - \frac{1}{32}$, $\frac{1}{7708593265600} a^{14} + \frac{3984946913}{770859326560} a^{12} + \frac{31402310577}{1541718653120} a^{10} + \frac{10653854421}{385429663280} a^{8} + \frac{21241758857}{192714831640} a^{6} - \frac{74548196057}{308343730624} a^{4} - \frac{1}{2} a^{3} + \frac{49115233559}{154171865312} a^{2} - \frac{1}{2} a - \frac{73659708865}{308343730624}$, $\frac{1}{15417186531200} a^{15} - \frac{1}{15417186531200} a^{14} + \frac{3984946913}{1541718653120} a^{13} - \frac{3984946913}{1541718653120} a^{12} + \frac{31402310577}{3083437306240} a^{11} - \frac{31402310577}{3083437306240} a^{10} - \frac{27889111907}{770859326560} a^{9} + \frac{27889111907}{770859326560} a^{8} - \frac{75115656963}{385429663280} a^{7} + \frac{75115656963}{385429663280} a^{6} - \frac{74548196057}{616687461248} a^{5} - \frac{233795534567}{616687461248} a^{4} - \frac{105056631753}{308343730624} a^{3} - \frac{49115233559}{308343730624} a^{2} + \frac{234684021759}{616687461248} a - \frac{234684021759}{616687461248}$
Class group and class number
$C_{14}$, which has order $14$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{34262239}{9635741582} a^{14} - \frac{34374884743}{385429663280} a^{12} - \frac{653823527577}{385429663280} a^{10} - \frac{388405051507}{24089353955} a^{8} - \frac{1469026558175}{19271483164} a^{6} + \frac{480524539077}{19271483164} a^{4} - \frac{2467041119961}{77085932656} a^{2} + \frac{81124781657}{77085932656} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 144974.394976 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{-71}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-355}) \), \(\Q(\zeta_{5})\), 4.4.630125.1, \(\Q(\sqrt{5}, \sqrt{-71})\), 8.0.393828125.1 x2, 8.4.1985287578125.1 x2, 8.0.397057515625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $71$ | 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |