Normalized defining polynomial
\( x^{16} - 4 x^{15} + 14 x^{14} - 58 x^{13} + 364 x^{12} - 1372 x^{11} + 2941 x^{10} - 4491 x^{9} + 7272 x^{8} - 12138 x^{7} + 19032 x^{6} - 25678 x^{5} + 28026 x^{4} - 31363 x^{3} + 31792 x^{2} - 37204 x + 31147 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(39412645190614083168888797209=13^{4}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{13} a^{13} + \frac{6}{13} a^{12} + \frac{5}{13} a^{11} + \frac{2}{13} a^{10} - \frac{4}{13} a^{9} - \frac{2}{13} a^{8} + \frac{2}{13} a^{7} + \frac{3}{13} a^{6} - \frac{2}{13} a^{5} + \frac{1}{13} a^{4} + \frac{3}{13} a^{3} - \frac{6}{13} a^{2} - \frac{1}{13} a + \frac{5}{13}$, $\frac{1}{91} a^{14} + \frac{3}{91} a^{13} - \frac{1}{7} a^{12} - \frac{1}{7} a^{11} + \frac{29}{91} a^{10} + \frac{36}{91} a^{9} - \frac{5}{91} a^{8} - \frac{3}{91} a^{7} + \frac{15}{91} a^{6} - \frac{45}{91} a^{5} + \frac{37}{91} a^{3} - \frac{9}{91} a^{2} + \frac{34}{91} a + \frac{24}{91}$, $\frac{1}{124096322598927337001580588339989} a^{15} + \frac{647006058552184334780172459506}{124096322598927337001580588339989} a^{14} - \frac{138536413725703676198317599082}{9545870969148256692429276026153} a^{13} - \frac{449197040504098223149229232332}{1611640553232822558462085562857} a^{12} - \frac{2778019237693035035032699800888}{17728046085561048143082941191427} a^{11} - \frac{8717411160863054883722255993883}{17728046085561048143082941191427} a^{10} - \frac{49374183530118611895954438813205}{124096322598927337001580588339989} a^{9} - \frac{30881139295259135567298395122255}{124096322598927337001580588339989} a^{8} - \frac{15440715988762841861205727449252}{124096322598927337001580588339989} a^{7} - \frac{33526765080825220117620140851799}{124096322598927337001580588339989} a^{6} - \frac{23900396730213913486230964271}{9545870969148256692429276026153} a^{5} + \frac{15985848479241113429370650255231}{124096322598927337001580588339989} a^{4} + \frac{4429979210747703089528495244805}{9545870969148256692429276026153} a^{3} - \frac{56506268414097098379090389973772}{124096322598927337001580588339989} a^{2} - \frac{11841029503655983271360237938535}{124096322598927337001580588339989} a - \frac{59631447450337756381115317859482}{124096322598927337001580588339989}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24692550.7041 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.0.148877.1, 8.0.288136694677.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |