Normalized defining polynomial
\( x^{16} - 2 x^{15} + 12 x^{14} - 22 x^{13} + 423 x^{12} - 4352 x^{11} - 7823 x^{10} + 38096 x^{9} + 236931 x^{8} + 455748 x^{7} + 1365365 x^{6} - 4398172 x^{5} + 3318918 x^{4} - 18237738 x^{3} + 58180841 x^{2} - 184744970 x + 202696796 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3922880935919264967742950184849=13^{12}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{32} a^{10} + \frac{3}{32} a^{9} - \frac{3}{32} a^{8} + \frac{3}{16} a^{7} - \frac{1}{4} a^{6} + \frac{3}{32} a^{4} + \frac{13}{32} a^{3} + \frac{7}{32} a^{2} - \frac{3}{16} a + \frac{3}{8}$, $\frac{1}{32} a^{11} - \frac{1}{8} a^{9} - \frac{1}{32} a^{8} + \frac{3}{16} a^{7} - \frac{1}{4} a^{6} + \frac{3}{32} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{11}{32} a^{2} - \frac{1}{16} a - \frac{1}{8}$, $\frac{1}{1088} a^{12} + \frac{1}{136} a^{11} - \frac{5}{1088} a^{10} - \frac{3}{272} a^{9} + \frac{9}{1088} a^{8} + \frac{1}{32} a^{7} + \frac{43}{1088} a^{6} + \frac{7}{272} a^{5} + \frac{53}{1088} a^{4} + \frac{5}{68} a^{3} + \frac{375}{1088} a^{2} + \frac{169}{544} a + \frac{69}{272}$, $\frac{1}{1088} a^{13} - \frac{1}{1088} a^{11} - \frac{3}{544} a^{10} + \frac{3}{1088} a^{9} - \frac{1}{272} a^{8} - \frac{25}{1088} a^{7} - \frac{11}{272} a^{6} + \frac{33}{1088} a^{5} - \frac{87}{544} a^{4} + \frac{109}{1088} a^{3} - \frac{6}{17} a^{2} - \frac{23}{136} a + \frac{47}{136}$, $\frac{1}{17408} a^{14} + \frac{7}{17408} a^{13} + \frac{3}{8704} a^{12} - \frac{195}{17408} a^{11} - \frac{105}{8704} a^{10} + \frac{1837}{17408} a^{9} + \frac{29}{544} a^{8} + \frac{2127}{17408} a^{7} + \frac{149}{8704} a^{6} + \frac{627}{17408} a^{5} + \frac{1943}{8704} a^{4} + \frac{5699}{17408} a^{3} - \frac{7557}{17408} a^{2} + \frac{2189}{8704} a + \frac{427}{4352}$, $\frac{1}{33232993696083604311504092856040425522592642382848} a^{15} - \frac{51296876462834067460968934223645593218632337}{1954881982122564959500240756237672089564273081344} a^{14} - \frac{1302680134859033958156176766806925294989141929}{16616496848041802155752046428020212761296321191424} a^{13} + \frac{8119378537853045522364160835629285524091919117}{33232993696083604311504092856040425522592642382848} a^{12} + \frac{69505633792635350523462838193766660804257562611}{16616496848041802155752046428020212761296321191424} a^{11} + \frac{233814888339238817630388928420847795837604631933}{33232993696083604311504092856040425522592642382848} a^{10} - \frac{33672432414840086183027933022062638339852056221}{4154124212010450538938011607005053190324080297856} a^{9} + \frac{13987494567607256624190297419442020559633260605}{132402365323042248253004354008129185348974670848} a^{8} + \frac{1311493596062022404599765693786477588081453238537}{16616496848041802155752046428020212761296321191424} a^{7} + \frac{6329959351565753785307969132746793712838465121571}{33232993696083604311504092856040425522592642382848} a^{6} - \frac{69914110156135455439388098061293633512151543045}{16616496848041802155752046428020212761296321191424} a^{5} - \frac{7210669661933736715078756906009347937400957665901}{33232993696083604311504092856040425522592642382848} a^{4} - \frac{12475526164477281663095521316547075678332340784509}{33232993696083604311504092856040425522592642382848} a^{3} + \frac{7763368099814942340414482127685201049953577924721}{16616496848041802155752046428020212761296321191424} a^{2} + \frac{3967676000920733290604571970086964553955661056679}{8308248424020901077876023214010106380648160595712} a - \frac{497134663590806415793323296072643985484641101687}{1038531053002612634734502901751263297581020074464}$
Class group and class number
$C_{2}\times C_{4}\times C_{8}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32676067.5694 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.830297.1, 4.0.3757.1, 4.0.63869.1, 8.8.1980626399884457.1, 8.0.1980626399884457.2, 8.0.689393108209.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |