Normalized defining polynomial
\( x^{16} - 2 x^{15} + 12 x^{14} - 22 x^{13} + 865 x^{12} + 68 x^{11} + 5879 x^{10} + 75224 x^{9} - 163742 x^{8} + 335966 x^{7} + 4327649 x^{6} - 4700058 x^{5} - 33955384 x^{4} - 22705032 x^{3} + 79867792 x^{2} + 138718144 x + 66232832 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3922880935919264967742950184849=13^{12}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{11} + \frac{1}{32} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} + \frac{1}{16} a^{6} + \frac{7}{32} a^{5} + \frac{5}{32} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{12} - \frac{1}{64} a^{11} - \frac{1}{16} a^{9} - \frac{3}{32} a^{8} - \frac{5}{32} a^{7} - \frac{13}{64} a^{6} + \frac{15}{64} a^{5} + \frac{1}{32} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{11} - \frac{1}{16} a^{10} - \frac{1}{32} a^{9} - \frac{7}{64} a^{7} - \frac{7}{32} a^{6} - \frac{15}{64} a^{5} + \frac{5}{32} a^{4} + \frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{512} a^{14} + \frac{3}{512} a^{12} - \frac{1}{64} a^{11} + \frac{3}{256} a^{10} + \frac{1}{32} a^{9} - \frac{47}{512} a^{8} - \frac{35}{256} a^{7} - \frac{99}{512} a^{6} + \frac{43}{256} a^{5} + \frac{5}{64} a^{4} + \frac{3}{64} a^{3} - \frac{11}{32} a^{2} + \frac{3}{8} a$, $\frac{1}{25632862144280391208451093275599852215528746620157952} a^{15} - \frac{8471880761155863616605055849337148672219870817109}{25632862144280391208451093275599852215528746620157952} a^{14} + \frac{140779027141661281799820078111919998655627040998299}{25632862144280391208451093275599852215528746620157952} a^{13} + \frac{171297334901168820540217975423063862616729250642857}{25632862144280391208451093275599852215528746620157952} a^{12} + \frac{196832006253586293507341918791849849170453104110667}{12816431072140195604225546637799926107764373310078976} a^{11} - \frac{242186115621171764694161696862451124087509159546159}{12816431072140195604225546637799926107764373310078976} a^{10} - \frac{1434519117916197026975361758422850880208220119790223}{25632862144280391208451093275599852215528746620157952} a^{9} - \frac{2805184666569710615734403757817082311995502371066059}{25632862144280391208451093275599852215528746620157952} a^{8} + \frac{2371446760557247435253483407669805827068707920018227}{25632862144280391208451093275599852215528746620157952} a^{7} - \frac{4456581130595957363842934116677462017307498062697003}{25632862144280391208451093275599852215528746620157952} a^{6} - \frac{764345723766658971427673475791629330265637460813079}{12816431072140195604225546637799926107764373310078976} a^{5} + \frac{266355412951841967251354829942220689569370740610549}{1602053884017524450528193329724990763470546663759872} a^{4} + \frac{1068386053589475581822031469647228576308788258366811}{3204107768035048901056386659449981526941093327519744} a^{3} - \frac{315772709264637828766934219035008129941258642170361}{1602053884017524450528193329724990763470546663759872} a^{2} - \frac{49213530658934412079102571782453339998509066723731}{400513471004381112632048332431247690867636665939968} a - \frac{10284364914633299172535668289446502915342309633717}{50064183875547639079006041553905961358454583242496}$
Class group and class number
$C_{2}\times C_{12}\times C_{408}$, which has order $9792$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32676067.5694 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.0.3757.1, 4.4.830297.1, 4.0.63869.1, 8.0.1980626399884457.1, 8.8.1980626399884457.1, 8.0.689393108209.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |