Normalized defining polynomial
\( x^{16} - 8 x^{15} + 28 x^{14} - 56 x^{13} + 46 x^{12} + 88 x^{11} - 306 x^{10} + 342 x^{9} + 156 x^{8} - 1136 x^{7} + 2026 x^{6} - 2216 x^{5} + 1679 x^{4} - 898 x^{3} + 332 x^{2} - 78 x + 9 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(390877006486250192896=2^{24}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{4}{9} a^{3} + \frac{4}{9} a^{2}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{7} + \frac{1}{3} a^{5} + \frac{2}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{477} a^{14} - \frac{7}{477} a^{13} - \frac{4}{159} a^{12} + \frac{4}{477} a^{11} + \frac{25}{159} a^{10} + \frac{31}{477} a^{9} + \frac{59}{477} a^{8} + \frac{67}{477} a^{7} + \frac{25}{477} a^{6} - \frac{142}{477} a^{5} + \frac{158}{477} a^{4} + \frac{28}{159} a^{3} - \frac{112}{477} a^{2} - \frac{77}{159} a - \frac{8}{53}$, $\frac{1}{60579} a^{15} + \frac{56}{60579} a^{14} + \frac{61}{20193} a^{13} + \frac{668}{20193} a^{12} - \frac{1852}{20193} a^{11} + \frac{331}{20193} a^{10} + \frac{7}{53} a^{9} - \frac{4484}{60579} a^{8} - \frac{4499}{60579} a^{7} - \frac{176}{20193} a^{6} + \frac{17129}{60579} a^{5} + \frac{656}{6731} a^{4} + \frac{4253}{20193} a^{3} + \frac{2624}{60579} a^{2} - \frac{2950}{6731} a + \frac{2411}{6731}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{27208}{60579} a^{15} - \frac{68020}{20193} a^{14} + \frac{662842}{60579} a^{13} - \frac{404521}{20193} a^{12} + \frac{235270}{20193} a^{11} + \frac{2658436}{60579} a^{10} - \frac{55145}{477} a^{9} + \frac{682622}{6731} a^{8} + \frac{749882}{6731} a^{7} - \frac{27410375}{60579} a^{6} + \frac{42547822}{60579} a^{5} - \frac{13783325}{20193} a^{4} + \frac{27639383}{60579} a^{3} - \frac{12554732}{60579} a^{2} + \frac{1264723}{20193} a - \frac{66227}{6731} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15199.5247179 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |