Normalized defining polynomial
\( x^{16} - 6 x^{15} + 54 x^{13} + 113 x^{12} - 1526 x^{11} + 3730 x^{10} + 400 x^{9} - 10048 x^{8} - 45882 x^{7} + 319616 x^{6} - 824978 x^{5} + 1227621 x^{4} - 1152650 x^{3} + 684110 x^{2} - 238380 x + 37845 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38982341165056000000000000=2^{28}\cdot 5^{12}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{36} a^{12} + \frac{1}{18} a^{11} - \frac{1}{6} a^{9} - \frac{1}{3} a^{8} + \frac{4}{9} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{9} a^{4} - \frac{5}{18} a^{3} + \frac{1}{18} a^{2} + \frac{2}{9} a - \frac{1}{12}$, $\frac{1}{1044} a^{13} + \frac{1}{116} a^{12} + \frac{43}{522} a^{11} - \frac{3}{58} a^{10} - \frac{79}{174} a^{9} + \frac{112}{261} a^{8} - \frac{127}{522} a^{7} + \frac{6}{29} a^{6} - \frac{139}{522} a^{5} - \frac{43}{174} a^{4} + \frac{127}{261} a^{3} + \frac{17}{522} a^{2} + \frac{1}{36} a + \frac{1}{12}$, $\frac{1}{2088} a^{14} + \frac{5}{2088} a^{12} + \frac{3}{29} a^{11} + \frac{1}{174} a^{10} - \frac{253}{1044} a^{9} - \frac{55}{1044} a^{8} + \frac{23}{116} a^{7} + \frac{455}{1044} a^{6} - \frac{37}{87} a^{5} - \frac{151}{1044} a^{4} - \frac{181}{1044} a^{3} - \frac{277}{2088} a^{2} - \frac{1}{12} a + \frac{1}{8}$, $\frac{1}{6552525771019698567192} a^{15} + \frac{74943112198693361}{6552525771019698567192} a^{14} - \frac{1136122751260825951}{6552525771019698567192} a^{13} - \frac{83951112902132306167}{6552525771019698567192} a^{12} - \frac{80643913547151873061}{1638131442754924641798} a^{11} + \frac{163531337628940954889}{3276262885509849283596} a^{10} - \frac{23626657700786981456}{273021907125820773633} a^{9} + \frac{253632822072361470217}{819065721377462320899} a^{8} + \frac{275058311576956704395}{1638131442754924641798} a^{7} + \frac{27542409383136356855}{112974582258960320124} a^{6} - \frac{619051435137929838751}{3276262885509849283596} a^{5} - \frac{202124125263143834512}{819065721377462320899} a^{4} - \frac{705156781298669748173}{2184175257006566189064} a^{3} - \frac{31700107865990695357}{75316388172640213416} a^{2} - \frac{40850092194523436705}{225949164517920640248} a + \frac{279544453274851307}{2597116833539317704}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{55123363128404}{247846562116731} a^{15} - \frac{267951486117880}{247846562116731} a^{14} - \frac{305376940217780}{247846562116731} a^{13} + \frac{5258853111483745}{495693124233462} a^{12} + \frac{9225662265965405}{247846562116731} a^{11} - \frac{73615734582838435}{247846562116731} a^{10} + \frac{121722632324843230}{247846562116731} a^{9} + \frac{160878822780392435}{247846562116731} a^{8} - \frac{123591596324526275}{82615520705577} a^{7} - \frac{101799769798107020}{8546433176439} a^{6} + \frac{14255920841732407751}{247846562116731} a^{5} - \frac{29227886040785241865}{247846562116731} a^{4} + \frac{34346617815261985430}{247846562116731} a^{3} - \frac{93359985918934470}{949603686271} a^{2} + \frac{341916017178163705}{8546433176439} a - \frac{1449644994385133}{196469728194} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2204103.04484 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T456):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), 4.4.58000.1, 4.0.3625.1, \(\Q(i, \sqrt{5})\), 8.0.3364000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.30 | $x^{8} + 8 x^{7} + 20$ | $4$ | $2$ | $16$ | $C_2^3: C_4$ | $[2, 2, 3]^{4}$ |
| 2.8.12.20 | $x^{8} + 8 x^{6} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |