Normalized defining polynomial
\( x^{16} - 2 x^{14} - 22 x^{13} + 10 x^{12} - 4 x^{11} + 85 x^{10} + 56 x^{9} + 133 x^{8} + 384 x^{7} - 422 x^{6} + 54 x^{5} - 939 x^{4} - 387 x^{3} + 162 x^{2} - 1053 x + 2673 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(388716732992848243307769=3^{10}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{6} + \frac{1}{9} a^{5} - \frac{1}{3} a^{4} - \frac{4}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{4}$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{3} a^{4} - \frac{4}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{27} a^{11} - \frac{1}{27} a^{10} - \frac{1}{27} a^{8} + \frac{4}{27} a^{7} + \frac{1}{9} a^{6} + \frac{1}{27} a^{5} - \frac{4}{27} a^{4} + \frac{1}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{12} - \frac{1}{27} a^{10} - \frac{1}{27} a^{9} - \frac{2}{27} a^{7} - \frac{2}{27} a^{6} + \frac{1}{9} a^{5} - \frac{10}{27} a^{4} - \frac{1}{3} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{27} a^{13} + \frac{1}{27} a^{10} - \frac{4}{27} a^{7} + \frac{1}{9} a^{5} - \frac{13}{27} a^{4} - \frac{1}{3} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{14} - \frac{1}{81} a^{13} - \frac{1}{81} a^{12} + \frac{1}{81} a^{10} + \frac{1}{81} a^{9} + \frac{2}{81} a^{7} - \frac{1}{81} a^{6} + \frac{1}{81} a^{5} + \frac{1}{3} a^{4} + \frac{8}{27} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{2644200722097063} a^{15} - \frac{5047080241826}{881400240699021} a^{14} - \frac{28201243828463}{2644200722097063} a^{13} + \frac{10646375159996}{2644200722097063} a^{12} - \frac{41156840540783}{2644200722097063} a^{11} - \frac{129892071897826}{2644200722097063} a^{10} - \frac{62313805695383}{2644200722097063} a^{9} + \frac{114165743821682}{2644200722097063} a^{8} + \frac{133526637984754}{2644200722097063} a^{7} + \frac{562464778238}{32644453359223} a^{6} + \frac{139918262194711}{2644200722097063} a^{5} + \frac{54578114928727}{293800080233007} a^{4} - \frac{49197321804370}{881400240699021} a^{3} + \frac{38466926368256}{293800080233007} a^{2} + \frac{10042614187610}{97933360077669} a + \frac{15608158174594}{32644453359223}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 342861.060416 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.D_4$ (as 16T330):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4.D_4$ |
| Character table for $C_2^4.D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.2.4107.1, 8.0.5616860517.1, 8.2.69274613043.1, 8.2.16850581551.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 37 | Data not computed | ||||||