Normalized defining polynomial
\( x^{16} - 28 x^{14} + 788 x^{12} - 11316 x^{10} + 162415 x^{8} - 1399986 x^{6} + 12864693 x^{4} - 62924873 x^{2} + 341917081 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3869303279468176000000000000=2^{16}\cdot 5^{12}\cdot 11^{2}\cdot 29^{4}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{205} a^{10} + \frac{13}{205} a^{8} - \frac{32}{205} a^{6} - \frac{2}{5} a^{4} - \frac{27}{205} a^{2} + \frac{2}{5}$, $\frac{1}{205} a^{11} + \frac{13}{205} a^{9} - \frac{32}{205} a^{7} - \frac{2}{5} a^{5} - \frac{27}{205} a^{3} + \frac{2}{5} a$, $\frac{1}{8405} a^{12} + \frac{13}{8405} a^{10} - \frac{72}{1681} a^{8} + \frac{4}{41} a^{6} + \frac{544}{1681} a^{4} - \frac{61}{205} a^{2} + \frac{2}{5}$, $\frac{1}{8405} a^{13} + \frac{13}{8405} a^{11} - \frac{72}{1681} a^{9} + \frac{4}{41} a^{7} + \frac{544}{1681} a^{5} - \frac{61}{205} a^{3} + \frac{2}{5} a$, $\frac{1}{8464659248770964305} a^{14} - \frac{419761897660067}{8464659248770964305} a^{12} - \frac{15024804722212102}{8464659248770964305} a^{10} + \frac{17239469220705291}{206455103628560105} a^{8} + \frac{335075140151379326}{769514477160996755} a^{6} - \frac{17812183607827363}{41291020725712021} a^{4} - \frac{2190661927670692}{5035490332403905} a^{2} - \frac{4169758503772}{11165167034155}$, $\frac{1}{8464659248770964305} a^{15} - \frac{419761897660067}{8464659248770964305} a^{13} - \frac{15024804722212102}{8464659248770964305} a^{11} + \frac{17239469220705291}{206455103628560105} a^{9} + \frac{335075140151379326}{769514477160996755} a^{7} - \frac{17812183607827363}{41291020725712021} a^{5} - \frac{2190661927670692}{5035490332403905} a^{3} - \frac{4169758503772}{11165167034155} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2369898331844}{8464659248770964305} a^{14} - \frac{57412166335672}{8464659248770964305} a^{12} + \frac{1247525506214277}{8464659248770964305} a^{10} - \frac{72050231252012}{41291020725712021} a^{8} + \frac{2954622257190723}{153902895432199351} a^{6} - \frac{27952530724340979}{206455103628560105} a^{4} + \frac{4417096121600407}{5035490332403905} a^{2} - \frac{18350365920902}{11165167034155} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19911328.1321 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n781 are not computed |
| Character table for t16n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.0.3625.1, 4.4.725.1, 8.0.13140625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.2 | $x^{8} + 2 x^{7} + 8 x^{2} + 48$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $[2, 2]^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 41 | Data not computed | ||||||