Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 84 x^{13} + 164 x^{12} - 256 x^{11} + 344 x^{10} - 422 x^{9} + 478 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(38416000000000000\)
\(\medspace = 2^{16}\cdot 5^{12}\cdot 7^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(10.88\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{7/6}5^{3/4}7^{1/2}\approx 19.85995155932405$ | ||
Ramified primes: |
\(2\), \(5\), \(7\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11}a^{14}+\frac{4}{11}a^{13}+\frac{4}{11}a^{12}+\frac{1}{11}a^{11}+\frac{4}{11}a^{10}+\frac{2}{11}a^{9}-\frac{2}{11}a^{8}-\frac{4}{11}a^{7}-\frac{1}{11}a^{6}-\frac{1}{11}a^{5}+\frac{2}{11}a^{4}+\frac{5}{11}a^{3}+\frac{2}{11}a^{2}+\frac{5}{11}a-\frac{1}{11}$, $\frac{1}{1661}a^{15}+\frac{68}{1661}a^{14}+\frac{821}{1661}a^{13}-\frac{51}{1661}a^{12}+\frac{365}{1661}a^{11}-\frac{149}{1661}a^{10}-\frac{259}{1661}a^{9}-\frac{57}{151}a^{8}-\frac{213}{1661}a^{7}-\frac{813}{1661}a^{6}-\frac{535}{1661}a^{5}+\frac{1}{1661}a^{4}-\frac{250}{1661}a^{3}+\frac{584}{1661}a^{2}+\frac{69}{151}a-\frac{757}{1661}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( \frac{1000}{1661} a^{15} - \frac{4480}{1661} a^{14} + \frac{564}{151} a^{13} + \frac{9551}{1661} a^{12} - \frac{56290}{1661} a^{11} + \frac{129142}{1661} a^{10} - \frac{197996}{1661} a^{9} + \frac{255444}{1661} a^{8} - \frac{321720}{1661} a^{7} + \frac{34756}{151} a^{6} - \frac{379470}{1661} a^{5} + \frac{274612}{1661} a^{4} - \frac{127388}{1661} a^{3} + \frac{40400}{1661} a^{2} - \frac{12006}{1661} a + \frac{6456}{1661} \)
(order $10$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1081}{1661}a^{15}-\frac{7730}{1661}a^{14}+\frac{27707}{1661}a^{13}-\frac{5863}{151}a^{12}+\frac{110685}{1661}a^{11}-\frac{150499}{1661}a^{10}+\frac{180420}{1661}a^{9}-\frac{204704}{1661}a^{8}+\frac{19481}{151}a^{7}-\frac{183045}{1661}a^{6}+\frac{104185}{1661}a^{5}-\frac{21871}{1661}a^{4}-\frac{15362}{1661}a^{3}+\frac{12053}{1661}a^{2}-\frac{961}{1661}a+\frac{405}{1661}$, $\frac{3336}{1661}a^{15}-\frac{26228}{1661}a^{14}+\frac{102094}{1661}a^{13}-\frac{258924}{1661}a^{12}+\frac{486196}{1661}a^{11}-\frac{728698}{1661}a^{10}+\frac{945258}{1661}a^{9}-\frac{1133728}{1661}a^{8}+\frac{1258472}{1661}a^{7}-\frac{1216664}{1661}a^{6}+\frac{85595}{151}a^{5}-\frac{532714}{1661}a^{4}+\frac{209410}{1661}a^{3}-\frac{59472}{1661}a^{2}+\frac{17572}{1661}a-\frac{6672}{1661}$, $\frac{2660}{1661}a^{15}-\frac{2198}{151}a^{14}+\frac{104590}{1661}a^{13}-\frac{288170}{1661}a^{12}+\frac{52257}{151}a^{11}-\frac{900982}{1661}a^{10}+\frac{1196446}{1661}a^{9}-\frac{1453702}{1661}a^{8}+\frac{1648892}{1661}a^{7}-\frac{1656881}{1661}a^{6}+\frac{1354847}{1661}a^{5}-\frac{824367}{1661}a^{4}+\frac{346096}{1661}a^{3}-\frac{102426}{1661}a^{2}+\frac{26948}{1661}a-\frac{9699}{1661}$, $\frac{6856}{1661}a^{15}-\frac{52024}{1661}a^{14}+\frac{195645}{1661}a^{13}-\frac{479214}{1661}a^{12}+\frac{871338}{1661}a^{11}-\frac{1270694}{1661}a^{10}+\frac{1622702}{1661}a^{9}-\frac{175768}{151}a^{8}+\frac{2120788}{1661}a^{7}-\frac{1996134}{1661}a^{6}+\frac{1476157}{1661}a^{5}-\frac{787102}{1661}a^{4}+\frac{295810}{1661}a^{3}-\frac{85478}{1661}a^{2}+\frac{2548}{151}a-\frac{7672}{1661}$, $\frac{5877}{1661}a^{15}-\frac{40680}{1661}a^{14}+\frac{12763}{151}a^{13}-\frac{315280}{1661}a^{12}+\frac{528801}{1661}a^{11}-\frac{716821}{1661}a^{10}+\frac{877700}{1661}a^{9}-\frac{1021994}{1661}a^{8}+\frac{1074203}{1661}a^{7}-\frac{83728}{151}a^{6}+\frac{569952}{1661}a^{5}-\frac{221982}{1661}a^{4}+\frac{56454}{1661}a^{3}-\frac{14709}{1661}a^{2}+\frac{10069}{1661}a+\frac{1081}{1661}$, $\frac{7937}{1661}a^{15}-\frac{59754}{1661}a^{14}+\frac{223352}{1661}a^{13}-\frac{543707}{1661}a^{12}+\frac{982023}{1661}a^{11}-\frac{1421193}{1661}a^{10}+\frac{1803122}{1661}a^{9}-\frac{2138152}{1661}a^{8}+\frac{2335079}{1661}a^{7}-\frac{2179179}{1661}a^{6}+\frac{1580342}{1661}a^{5}-\frac{73543}{151}a^{4}+\frac{280448}{1661}a^{3}-\frac{6675}{151}a^{2}+\frac{28728}{1661}a-\frac{8928}{1661}$, $\frac{8315}{1661}a^{15}-\frac{62438}{1661}a^{14}+\frac{232445}{1661}a^{13}-\frac{563589}{1661}a^{12}+\frac{1015199}{1661}a^{11}-\frac{1468153}{1661}a^{10}+\frac{1864374}{1661}a^{9}-\frac{201249}{151}a^{8}+\frac{2416286}{1661}a^{7}-\frac{2252141}{1661}a^{6}+\frac{1635718}{1661}a^{5}-\frac{845439}{1661}a^{4}+\frac{301463}{1661}a^{3}-\frac{82193}{1661}a^{2}+\frac{2502}{151}a-\frac{7570}{1661}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 175.447877376 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 175.447877376 \cdot 1}{10\cdot\sqrt{38416000000000000}}\cr\approx \mathstrut & 0.217435771583 \end{aligned}\]
Galois group
$C_4\times S_4$ (as 16T181):
A solvable group of order 96 |
The 20 conjugacy class representatives for $C_4\times S_4$ |
Character table for $C_4\times S_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.2.14000.1, 8.4.196000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 sibling: | data not computed |
Minimal sibling: | 12.0.768320000000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | R | R | ${\href{/padicField/11.3.0.1}{3} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.4.0.1}{4} }$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| Deg $16$ | $4$ | $4$ | $16$ | |||
\(5\)
| 5.16.12.1 | $x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$ | $4$ | $4$ | $12$ | $C_4^2$ | $[\ ]_{4}^{4}$ |
\(7\)
| 7.4.0.1 | $x^{4} + 5 x^{2} + 4 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
7.4.0.1 | $x^{4} + 5 x^{2} + 4 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
7.8.4.1 | $x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |