Normalized defining polynomial
\( x^{16} - 4 x^{15} - 5 x^{14} + 25 x^{13} + 76 x^{12} - 255 x^{11} - 201 x^{10} + 635 x^{9} + 1486 x^{8} - 2500 x^{7} - 1610 x^{6} + 766 x^{5} + 6016 x^{4} - 5965 x^{3} + 2390 x^{2} - 375 x + 25 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(383854225736338134765625=5^{12}\cdot 11^{6}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{55} a^{14} + \frac{16}{55} a^{13} - \frac{1}{11} a^{12} - \frac{5}{11} a^{11} + \frac{21}{55} a^{10} + \frac{5}{11} a^{9} + \frac{14}{55} a^{8} + \frac{2}{11} a^{7} + \frac{1}{5} a^{6} + \frac{4}{11} a^{5} - \frac{24}{55} a^{3} - \frac{19}{55} a^{2} + \frac{3}{11} a + \frac{5}{11}$, $\frac{1}{77495572544706128117855} a^{15} - \frac{570752169860372044587}{77495572544706128117855} a^{14} - \frac{2146799006247796958363}{77495572544706128117855} a^{13} + \frac{4010030230921181670289}{15499114508941225623571} a^{12} - \frac{9057014109716471978104}{77495572544706128117855} a^{11} + \frac{6097243258728703414647}{77495572544706128117855} a^{10} + \frac{17962347358384301723779}{77495572544706128117855} a^{9} + \frac{5386875011399775354858}{77495572544706128117855} a^{8} - \frac{8856221182549817624644}{77495572544706128117855} a^{7} - \frac{11877205985629881932158}{77495572544706128117855} a^{6} - \frac{7074352635349915542342}{15499114508941225623571} a^{5} + \frac{26485990369043453492341}{77495572544706128117855} a^{4} - \frac{4822314400957297173052}{77495572544706128117855} a^{3} + \frac{16967018376968101279327}{77495572544706128117855} a^{2} - \frac{303640320575782399928}{15499114508941225623571} a - \frac{1364979924513891975843}{15499114508941225623571}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1209954036857862379764}{77495572544706128117855} a^{15} + \frac{910171331994308216915}{15499114508941225623571} a^{14} + \frac{7042055767006392203089}{77495572544706128117855} a^{13} - \frac{5660189669764839189852}{15499114508941225623571} a^{12} - \frac{97999179336480107043199}{77495572544706128117855} a^{11} + \frac{283794223238132080759994}{77495572544706128117855} a^{10} + \frac{302606304021144358824234}{77495572544706128117855} a^{9} - \frac{682540609471113976650404}{77495572544706128117855} a^{8} - \frac{1930111738049408806188019}{77495572544706128117855} a^{7} + \frac{2547453486180782800863229}{77495572544706128117855} a^{6} + \frac{481050177566633930779373}{15499114508941225623571} a^{5} - \frac{296345615815068231006454}{77495572544706128117855} a^{4} - \frac{1432154937737532891266750}{15499114508941225623571} a^{3} + \frac{5655710074704320402947184}{77495572544706128117855} a^{2} - \frac{389446249577194148177675}{15499114508941225623571} a + \frac{32046038376767086652080}{15499114508941225623571} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 199912.820048 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8):C_2^2$ (as 16T75):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times C_8):C_2^2$ |
| Character table for $(C_2\times C_8):C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.8525.1, \(\Q(\zeta_{5})\), 4.0.42625.1, 8.4.619559703125.2, 8.4.24782388125.1, 8.0.1816890625.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31 | Data not computed | ||||||