Normalized defining polynomial
\( x^{16} - x^{15} - 2 x^{14} + 56 x^{12} + 45 x^{11} + 92 x^{10} - 262 x^{9} - 19 x^{8} - 280 x^{7} + 950 x^{6} + 375 x^{5} + 700 x^{4} - 750 x^{3} + 625 x + 625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(383854225736338134765625=5^{12}\cdot 11^{6}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{6} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{12} - \frac{1}{25} a^{11} - \frac{2}{25} a^{10} + \frac{6}{25} a^{8} - \frac{1}{5} a^{7} - \frac{8}{25} a^{6} - \frac{12}{25} a^{5} + \frac{6}{25} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{13} + \frac{2}{25} a^{11} - \frac{2}{25} a^{10} - \frac{9}{25} a^{9} - \frac{9}{25} a^{8} - \frac{8}{25} a^{7} + \frac{2}{5} a^{6} + \frac{4}{25} a^{5} + \frac{1}{25} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{125} a^{14} - \frac{1}{125} a^{13} - \frac{2}{125} a^{12} + \frac{6}{125} a^{10} - \frac{6}{25} a^{9} - \frac{58}{125} a^{8} - \frac{12}{125} a^{7} + \frac{56}{125} a^{6} - \frac{6}{25} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{1862083142105300125} a^{15} + \frac{2126393651295387}{1862083142105300125} a^{14} - \frac{489866702207709}{33856057129187275} a^{13} - \frac{767888707212181}{169280285645936375} a^{12} + \frac{185080449606973361}{1862083142105300125} a^{11} + \frac{13999163848520238}{1862083142105300125} a^{10} - \frac{366351530792921103}{1862083142105300125} a^{9} - \frac{58183039974703901}{169280285645936375} a^{8} + \frac{121956601372923883}{372416628421060025} a^{7} - \frac{12061773010704482}{1862083142105300125} a^{6} + \frac{115362439251617139}{372416628421060025} a^{5} - \frac{60653088146584454}{372416628421060025} a^{4} + \frac{192084499625175}{1354242285167491} a^{3} - \frac{15896462715777652}{74483325684212005} a^{2} + \frac{7431583367836517}{14896665136842401} a + \frac{1238294292175746}{14896665136842401}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5635216416516697}{1862083142105300125} a^{15} + \frac{14531578683161717}{1862083142105300125} a^{14} + \frac{279125905332754}{169280285645936375} a^{13} - \frac{659730864052576}{33856057129187275} a^{12} - \frac{272150053453908827}{1862083142105300125} a^{11} + \frac{50788243997303499}{372416628421060025} a^{10} - \frac{195248810289992229}{1862083142105300125} a^{9} + \frac{134576495434908219}{169280285645936375} a^{8} - \frac{1427941773432126807}{1862083142105300125} a^{7} + \frac{3810035005462337}{14896665136842401} a^{6} - \frac{710716803288527388}{372416628421060025} a^{5} + \frac{356994902084516186}{372416628421060025} a^{4} + \frac{2990280177084901}{6771211425837455} a^{3} + \frac{8597342956954119}{14896665136842401} a^{2} - \frac{16157198698796904}{14896665136842401} a + \frac{9305035746324178}{14896665136842401} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 99956.410024 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8):C_2^2$ (as 16T75):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times C_8):C_2^2$ |
| Character table for $(C_2\times C_8):C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.4.8525.1, 4.0.42625.1, 8.4.619559703125.1, 8.4.24782388125.2, 8.0.1816890625.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31 | Data not computed | ||||||