Normalized defining polynomial
\( x^{16} + 168 x^{14} + 15552 x^{12} + 696016 x^{10} + 6123000 x^{8} - 149969952 x^{6} + 25613941120 x^{4} + 131763169728 x^{2} + 1310484615696 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3820736401648967194220515025487549637328896=2^{48}\cdot 13^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $458.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3536=2^{4}\cdot 13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3536}(1,·)$, $\chi_{3536}(3141,·)$, $\chi_{3536}(1483,·)$, $\chi_{3536}(2835,·)$, $\chi_{3536}(2007,·)$, $\chi_{3536}(545,·)$, $\chi_{3536}(421,·)$, $\chi_{3536}(1191,·)$, $\chi_{3536}(3433,·)$, $\chi_{3536}(2027,·)$, $\chi_{3536}(2605,·)$, $\chi_{3536}(1903,·)$, $\chi_{3536}(3379,·)$, $\chi_{3536}(441,·)$, $\chi_{3536}(1789,·)$, $\chi_{3536}(1087,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{12} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{12} a^{5} + \frac{1}{6} a$, $\frac{1}{36} a^{6} + \frac{1}{36} a^{4} - \frac{1}{18} a^{2} - \frac{1}{2}$, $\frac{1}{36} a^{7} + \frac{1}{36} a^{5} - \frac{1}{18} a^{3} - \frac{1}{2} a$, $\frac{1}{25920} a^{8} - \frac{1}{72} a^{7} - \frac{13}{2160} a^{6} - \frac{1}{72} a^{5} - \frac{13}{1080} a^{4} - \frac{5}{36} a^{3} + \frac{577}{3240} a^{2} + \frac{5}{12} a + \frac{319}{720}$, $\frac{1}{25920} a^{9} - \frac{13}{2160} a^{7} - \frac{1}{72} a^{6} - \frac{13}{1080} a^{5} + \frac{1}{36} a^{4} - \frac{503}{3240} a^{3} - \frac{5}{36} a^{2} - \frac{161}{720} a - \frac{1}{2}$, $\frac{1}{25920} a^{10} - \frac{1}{72} a^{7} - \frac{7}{1080} a^{6} + \frac{1}{36} a^{5} - \frac{17}{3240} a^{4} - \frac{5}{36} a^{3} + \frac{145}{432} a^{2} - \frac{1}{2} a - \frac{23}{60}$, $\frac{1}{77760} a^{11} - \frac{1}{77760} a^{9} - \frac{61}{6480} a^{7} - \frac{1}{72} a^{6} - \frac{17}{2430} a^{5} + \frac{1}{36} a^{4} + \frac{1381}{19440} a^{3} - \frac{5}{36} a^{2} - \frac{191}{432} a - \frac{1}{2}$, $\frac{1}{38736610560} a^{12} + \frac{17893}{1936830528} a^{10} + \frac{103363}{6456101760} a^{8} - \frac{32279497}{2421038160} a^{6} - \frac{1}{24} a^{5} - \frac{391403573}{9684152640} a^{4} - \frac{1}{6} a^{3} + \frac{17314201}{53800848} a^{2} + \frac{1}{12} a + \frac{1105387}{6642080}$, $\frac{1}{38736610560} a^{13} - \frac{17537}{4842076320} a^{11} - \frac{62689}{6456101760} a^{9} + \frac{5082203}{2421038160} a^{7} - \frac{1}{72} a^{6} - \frac{207085853}{9684152640} a^{5} + \frac{1}{36} a^{4} + \frac{14666389}{201753180} a^{3} + \frac{13}{36} a^{2} + \frac{29679397}{179336160} a - \frac{1}{2}$, $\frac{1}{32676416082896613120} a^{14} - \frac{94319309}{8169104020724153280} a^{12} + \frac{112139989131719}{16338208041448306560} a^{10} - \frac{5359360822927}{816910402072415328} a^{8} - \frac{4999356819071969}{1633820804144830656} a^{6} + \frac{2046144458027953}{70423310523484080} a^{4} - \frac{1}{6} a^{3} + \frac{132135430927490197}{453839112262452960} a^{2} - \frac{1}{3} a - \frac{3693568466934617}{12606642007290360}$, $\frac{1}{1039077355020029400602880} a^{15} + \frac{2019934138429}{1039077355020029400602880} a^{13} - \frac{3299782598723293387}{519538677510014700301440} a^{11} - \frac{588051995041375741}{103907735502002940060288} a^{9} - \frac{2241892527597999741301}{259769338755007350150720} a^{7} - \frac{332835407014204144301}{8957563405345081039680} a^{5} + \frac{2136727849065739264567}{14431629930833741675040} a^{3} - \frac{1}{2} a^{2} - \frac{245527625626053952019}{1603514436759304630560} a$
Class group and class number
$C_{2}\times C_{4}\times C_{8}\times C_{104}\times C_{104}\times C_{3016}$, which has order $2087747584$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103963078.62847929 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 13 | Data not computed | ||||||
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |