Normalized defining polynomial
\( x^{16} - 4 x^{15} - 86 x^{14} + 480 x^{13} + 2806 x^{12} - 22002 x^{11} - 24804 x^{10} + 474882 x^{9} - 616589 x^{8} - 3884708 x^{7} + 15339864 x^{6} - 31253884 x^{5} + 60004187 x^{4} - 42164356 x^{3} - 12439955 x^{2} - 321982852 x + 779940859 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(379236070824193420342929192569089=17^{14}\cdot 83^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{34} a^{8} - \frac{1}{17} a^{7} + \frac{3}{17} a^{6} + \frac{7}{17} a^{5} - \frac{15}{34} a^{4} - \frac{7}{17} a^{3} - \frac{11}{34} a^{2} - \frac{15}{34} a + \frac{1}{34}$, $\frac{1}{34} a^{9} + \frac{1}{17} a^{7} - \frac{4}{17} a^{6} + \frac{13}{34} a^{5} - \frac{5}{17} a^{4} - \frac{5}{34} a^{3} - \frac{3}{34} a^{2} + \frac{5}{34} a + \frac{1}{17}$, $\frac{1}{34} a^{10} - \frac{2}{17} a^{7} + \frac{1}{34} a^{6} - \frac{2}{17} a^{5} - \frac{9}{34} a^{4} - \frac{9}{34} a^{3} - \frac{7}{34} a^{2} - \frac{1}{17} a - \frac{1}{17}$, $\frac{1}{34} a^{11} - \frac{7}{34} a^{7} - \frac{7}{17} a^{6} + \frac{13}{34} a^{5} - \frac{1}{34} a^{4} + \frac{5}{34} a^{3} - \frac{6}{17} a^{2} + \frac{3}{17} a + \frac{2}{17}$, $\frac{1}{25874} a^{12} - \frac{9}{761} a^{11} - \frac{96}{12937} a^{10} - \frac{89}{25874} a^{9} - \frac{66}{12937} a^{8} - \frac{1372}{12937} a^{7} - \frac{6133}{25874} a^{6} - \frac{1716}{12937} a^{5} + \frac{4833}{12937} a^{4} - \frac{12069}{25874} a^{3} - \frac{201}{761} a^{2} - \frac{3103}{12937} a + \frac{6711}{25874}$, $\frac{1}{25874} a^{13} - \frac{225}{25874} a^{11} - \frac{122}{12937} a^{10} + \frac{15}{12937} a^{9} + \frac{241}{25874} a^{8} - \frac{3968}{12937} a^{7} - \frac{11875}{25874} a^{6} - \frac{239}{25874} a^{5} + \frac{1470}{12937} a^{4} - \frac{744}{12937} a^{3} + \frac{42}{761} a^{2} + \frac{2424}{12937} a + \frac{2671}{25874}$, $\frac{1}{25874} a^{14} + \frac{157}{25874} a^{11} + \frac{207}{25874} a^{10} + \frac{1}{12937} a^{9} - \frac{347}{25874} a^{8} - \frac{1486}{12937} a^{7} + \frac{599}{1522} a^{6} + \frac{12287}{25874} a^{5} - \frac{815}{25874} a^{4} + \frac{10283}{25874} a^{3} - \frac{3118}{12937} a^{2} + \frac{617}{12937} a - \frac{4110}{12937}$, $\frac{1}{6016135409189875196853709493151666747487056566} a^{15} - \frac{113973404585642271970093453942423171380871}{6016135409189875196853709493151666747487056566} a^{14} - \frac{27205142203680501428944381765026008538410}{3008067704594937598426854746575833373743528283} a^{13} + \frac{20324971453251841898353832668185028670119}{6016135409189875196853709493151666747487056566} a^{12} - \frac{1883575844255101041581448144962372700594863}{6016135409189875196853709493151666747487056566} a^{11} + \frac{47487112664876947589215333132377383540917133}{6016135409189875196853709493151666747487056566} a^{10} - \frac{41233019110031934404295274049115936122111263}{6016135409189875196853709493151666747487056566} a^{9} - \frac{24449804790070007894537430237344474309693595}{6016135409189875196853709493151666747487056566} a^{8} - \frac{447209455430905517621327906534561953169493984}{3008067704594937598426854746575833373743528283} a^{7} + \frac{1362749232351965706819888179406854191577285553}{3008067704594937598426854746575833373743528283} a^{6} - \frac{59451450271055721994173400906687006587030221}{6016135409189875196853709493151666747487056566} a^{5} + \frac{2404030850403806990048920612328596432777811583}{6016135409189875196853709493151666747487056566} a^{4} - \frac{1239437215736777954681301324145101906641117817}{3008067704594937598426854746575833373743528283} a^{3} - \frac{1493287303473269574203660296679511594575682915}{3008067704594937598426854746575833373743528283} a^{2} - \frac{227611852367973410318311153264004049916149612}{3008067704594937598426854746575833373743528283} a + \frac{1416411570979315698620396021782031195423212802}{3008067704594937598426854746575833373743528283}$
Class group and class number
$C_{1272}$, which has order $1272$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2344259.36682 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-83}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-1411}) \), \(\Q(\sqrt{17}, \sqrt{-83})\), 4.4.4913.1, 4.0.33845657.2, 8.0.1145528497761649.3, 8.4.2826823118297.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $83$ | 83.8.4.1 | $x^{8} + 303116 x^{4} - 571787 x^{2} + 22969827364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 83.8.4.1 | $x^{8} + 303116 x^{4} - 571787 x^{2} + 22969827364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |