Normalized defining polynomial
\( x^{16} - 6 x^{15} + 72 x^{14} - 320 x^{13} + 2329 x^{12} - 8230 x^{11} + 45140 x^{10} - 128635 x^{9} + 576030 x^{8} - 1307274 x^{7} + 4968321 x^{6} - 8598346 x^{5} + 28370042 x^{4} - 33852655 x^{3} + 98545822 x^{2} - 61631729 x + 160839449 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(379165883956039466757862890625=5^{8}\cdot 7^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(595=5\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{595}(1,·)$, $\chi_{595}(69,·)$, $\chi_{595}(526,·)$, $\chi_{595}(594,·)$, $\chi_{595}(281,·)$, $\chi_{595}(349,·)$, $\chi_{595}(36,·)$, $\chi_{595}(421,·)$, $\chi_{595}(104,·)$, $\chi_{595}(489,·)$, $\chi_{595}(106,·)$, $\chi_{595}(491,·)$, $\chi_{595}(174,·)$, $\chi_{595}(559,·)$, $\chi_{595}(246,·)$, $\chi_{595}(314,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{26} a^{14} + \frac{3}{26} a^{12} - \frac{3}{26} a^{11} - \frac{1}{13} a^{10} - \frac{1}{26} a^{9} - \frac{7}{26} a^{8} - \frac{6}{13} a^{7} - \frac{5}{26} a^{6} + \frac{11}{26} a^{5} + \frac{1}{13} a^{4} - \frac{9}{26} a^{3} - \frac{11}{26} a^{2} + \frac{2}{13} a + \frac{1}{26}$, $\frac{1}{3501681333523774670297315096503237679325502} a^{15} - \frac{12388771777331603902650875737688293025943}{3501681333523774670297315096503237679325502} a^{14} + \frac{13254026112621838371920559344659326218864}{1750840666761887335148657548251618839662751} a^{13} - \frac{288224172903697899243705503142632480373724}{1750840666761887335148657548251618839662751} a^{12} + \frac{992178897181916211711925853549706325365711}{3501681333523774670297315096503237679325502} a^{11} - \frac{55426081540927355623037877657548169355271}{134680051289375948857589042173201449204827} a^{10} - \frac{27732446326920986242657937873021076302235}{134680051289375948857589042173201449204827} a^{9} + \frac{1718118118166115728190369308083155562768551}{3501681333523774670297315096503237679325502} a^{8} + \frac{222268571840664304338014296021271640997460}{1750840666761887335148657548251618839662751} a^{7} - \frac{577606995713662053166119078941255202037204}{1750840666761887335148657548251618839662751} a^{6} - \frac{191970533416614872184485879116068980503833}{3501681333523774670297315096503237679325502} a^{5} + \frac{472094515039173172717791171900249380080802}{1750840666761887335148657548251618839662751} a^{4} + \frac{49734471539457239531923653677946084623500}{134680051289375948857589042173201449204827} a^{3} + \frac{896456488416506451737402017647229822879301}{3501681333523774670297315096503237679325502} a^{2} + \frac{106380323095169321626007292288771731823657}{1750840666761887335148657548251618839662751} a - \frac{891381654668733005273492768476309585997231}{3501681333523774670297315096503237679325502}$
Class group and class number
$C_{24272}$, which has order $24272$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.012213375973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-595}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{17}, \sqrt{-35})\), 4.4.4913.1, 4.0.6018425.1, 8.0.36221439480625.7, \(\Q(\zeta_{17})^+\), 8.0.615764471170625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |