Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 84 x^{13} + 191 x^{12} - 418 x^{11} + 1144 x^{10} - 2937 x^{9} + 4567 x^{8} - 3528 x^{7} - 4016 x^{6} + 14875 x^{5} - 2581 x^{4} - 19272 x^{3} + 35864 x^{2} - 23830 x + 53971 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(379099670317033992358041=3^{12}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{15} a^{8} - \frac{1}{15} a^{7} - \frac{1}{15} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{7}{15} a^{3} + \frac{2}{15} a^{2} + \frac{1}{15} a - \frac{1}{3}$, $\frac{1}{15} a^{9} + \frac{1}{15} a^{7} + \frac{1}{15} a^{6} - \frac{1}{5} a^{5} + \frac{2}{15} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{15} a - \frac{2}{15}$, $\frac{1}{75} a^{10} - \frac{1}{75} a^{8} - \frac{2}{25} a^{7} - \frac{37}{75} a^{6} + \frac{1}{75} a^{5} - \frac{11}{75} a^{4} + \frac{2}{15} a^{3} - \frac{7}{15} a^{2} - \frac{22}{75} a + \frac{16}{75}$, $\frac{1}{75} a^{11} - \frac{1}{75} a^{9} - \frac{1}{75} a^{8} + \frac{1}{25} a^{7} + \frac{26}{75} a^{6} - \frac{31}{75} a^{5} - \frac{1}{5} a^{4} + \frac{1}{25} a^{2} + \frac{12}{25} a + \frac{4}{15}$, $\frac{1}{375} a^{12} - \frac{1}{375} a^{11} + \frac{2}{375} a^{10} - \frac{2}{75} a^{9} + \frac{1}{375} a^{8} - \frac{4}{75} a^{7} + \frac{62}{375} a^{6} + \frac{64}{375} a^{5} + \frac{112}{375} a^{4} - \frac{19}{125} a^{3} - \frac{14}{125} a^{2} + \frac{6}{125} a + \frac{36}{125}$, $\frac{1}{375} a^{13} + \frac{1}{375} a^{11} + \frac{2}{375} a^{10} - \frac{3}{125} a^{9} - \frac{4}{375} a^{8} + \frac{32}{375} a^{7} + \frac{31}{375} a^{6} - \frac{139}{375} a^{5} - \frac{12}{25} a^{4} + \frac{176}{375} a^{3} - \frac{58}{125} a^{2} + \frac{27}{125} a - \frac{157}{375}$, $\frac{1}{40642491375} a^{14} - \frac{7}{40642491375} a^{13} - \frac{46003537}{40642491375} a^{12} - \frac{265878572}{40642491375} a^{11} + \frac{135659366}{40642491375} a^{10} + \frac{42906944}{40642491375} a^{9} + \frac{1266383537}{40642491375} a^{8} - \frac{3912440738}{40642491375} a^{7} - \frac{9052004897}{40642491375} a^{6} + \frac{14854406606}{40642491375} a^{5} - \frac{811648312}{8128498275} a^{4} - \frac{287758498}{8128498275} a^{3} + \frac{3907939841}{8128498275} a^{2} - \frac{1350597193}{40642491375} a + \frac{526715512}{8128498275}$, $\frac{1}{459869789908125} a^{15} + \frac{226}{18394791596325} a^{14} - \frac{10889472071}{153289929969375} a^{13} + \frac{565239157382}{459869789908125} a^{12} - \frac{1436201936813}{459869789908125} a^{11} + \frac{227023183297}{51096643323125} a^{10} + \frac{16937821594}{770301155625} a^{9} + \frac{1756518714782}{459869789908125} a^{8} - \frac{2273080130793}{51096643323125} a^{7} + \frac{170772239959771}{459869789908125} a^{6} - \frac{1354967851903}{459869789908125} a^{5} - \frac{18505450009471}{51096643323125} a^{4} + \frac{62385216074219}{153289929969375} a^{3} + \frac{41077902225364}{459869789908125} a^{2} - \frac{29402059155098}{153289929969375} a - \frac{5798307152132}{14834509351875}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{61}{11915125} a^{14} - \frac{427}{11915125} a^{13} + \frac{8128}{35745375} a^{12} - \frac{2141}{2383025} a^{11} + \frac{24032}{11915125} a^{10} - \frac{96623}{35745375} a^{9} + \frac{22701}{2383025} a^{8} - \frac{361083}{11915125} a^{7} + \frac{2230532}{35745375} a^{6} - \frac{1002577}{11915125} a^{5} - \frac{666604}{11915125} a^{4} + \frac{7793087}{35745375} a^{3} + \frac{3465329}{11915125} a^{2} - \frac{4873239}{11915125} a + \frac{22878742}{35745375} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 137103.334761 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.SD_{16}$ (as 16T163):
| A solvable group of order 64 |
| The 19 conjugacy class representatives for $C_2^2.SD_{16}$ |
| Character table for $C_2^2.SD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.549.1, 8.0.615710703429.2, 8.0.18385461.1, 8.0.10093618089.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $61$ | 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |