Normalized defining polynomial
\( x^{16} - 5 x^{15} - 4 x^{14} + 57 x^{13} - 83 x^{12} - 193 x^{11} + 1042 x^{10} - 682 x^{9} - 1226 x^{8} + 1038 x^{7} - 5305 x^{6} + 4294 x^{5} + 6685 x^{4} + 1566 x^{3} + 8184 x^{2} - 9072 x + 2352 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(379099670317033992358041=3^{12}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} + \frac{5}{12} a^{6} - \frac{5}{12} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{372} a^{13} + \frac{1}{62} a^{12} + \frac{23}{372} a^{11} + \frac{1}{31} a^{10} + \frac{11}{31} a^{9} + \frac{21}{124} a^{8} + \frac{35}{372} a^{7} - \frac{7}{62} a^{6} - \frac{17}{372} a^{5} - \frac{41}{124} a^{4} + \frac{55}{124} a^{3} + \frac{15}{62} a^{2} + \frac{5}{31} a + \frac{5}{31}$, $\frac{1}{372} a^{14} - \frac{13}{372} a^{12} - \frac{1}{186} a^{11} + \frac{5}{31} a^{10} + \frac{139}{372} a^{9} + \frac{51}{124} a^{8} - \frac{32}{93} a^{7} - \frac{13}{372} a^{6} - \frac{7}{124} a^{5} - \frac{89}{372} a^{4} - \frac{13}{31} a^{3} - \frac{9}{31} a^{2} + \frac{6}{31} a + \frac{1}{31}$, $\frac{1}{3736636874735410662601568760} a^{15} + \frac{4466083044434163884131}{40178891126187211425823320} a^{14} + \frac{63775350119561147339315}{373663687473541066260156876} a^{13} + \frac{106823536878295018000097677}{3736636874735410662601568760} a^{12} + \frac{81189966224160975301247041}{1245545624911803554200522920} a^{11} + \frac{284929608890614633902837611}{3736636874735410662601568760} a^{10} - \frac{29675722706881597014086101}{373663687473541066260156876} a^{9} + \frac{11810074376952357186858739}{51897734371325148091688455} a^{8} + \frac{190821831098245344275574071}{467079609341926332825196095} a^{7} - \frac{705632769625960935893173619}{1868318437367705331300784380} a^{6} + \frac{523274215682353878145245827}{1245545624911803554200522920} a^{5} + \frac{109254363689558044450836899}{467079609341926332825196095} a^{4} - \frac{3372596382338575558621931}{9365004698584989129327240} a^{3} - \frac{12731410000519693586718011}{622772812455901777100261460} a^{2} - \frac{14562716634764094006728471}{155693203113975444275065365} a - \frac{1595321011672219448887258}{22241886159139349182152195}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{10529781561404857}{28588712573181234120} a^{15} + \frac{49534279694231279}{28588712573181234120} a^{14} + \frac{5200008647313697}{2858871257318123412} a^{13} - \frac{558687838143420169}{28588712573181234120} a^{12} + \frac{710995992697356389}{28588712573181234120} a^{11} + \frac{1987544435756533003}{28588712573181234120} a^{10} - \frac{492728200188417019}{1429435628659061706} a^{9} + \frac{2405770166797093247}{14294356286590617060} a^{8} + \frac{4675784197902868627}{14294356286590617060} a^{7} - \frac{1267644837950298757}{14294356286590617060} a^{6} + \frac{56224423413290179813}{28588712573181234120} a^{5} - \frac{3914328568248514988}{3573589071647654265} a^{4} - \frac{21996974887082272539}{9529570857727078040} a^{3} - \frac{4361115445948649269}{2382392714431769510} a^{2} - \frac{8797711947636960061}{2382392714431769510} a + \frac{2803846593718697217}{1191196357215884755} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 505125.641002 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{-183}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{-3}) \), 4.0.549.1 x2, \(\Q(\sqrt{-3}, \sqrt{61})\), 4.2.11163.1 x2, 8.0.10093618089.2 x2, 8.0.1121513121.2, 8.0.615710703429.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 61 | Data not computed | ||||||