Normalized defining polynomial
\( x^{16} - 2 x^{15} - 16 x^{14} + 42 x^{13} + 85 x^{12} - 256 x^{11} + 244 x^{10} + 1253 x^{9} - 1877 x^{8} - 2124 x^{7} + 7286 x^{6} - 1283 x^{5} - 17162 x^{4} + 2622 x^{3} + 16878 x^{2} + 375 x + 813 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(379099670317033992358041=3^{12}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{15} a^{12} - \frac{4}{15} a^{10} - \frac{1}{5} a^{8} - \frac{1}{15} a^{6} - \frac{2}{15} a^{4} + \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{45} a^{13} + \frac{1}{45} a^{12} + \frac{2}{45} a^{11} - \frac{13}{45} a^{10} - \frac{7}{15} a^{9} + \frac{1}{5} a^{8} - \frac{7}{45} a^{7} - \frac{7}{45} a^{6} - \frac{14}{45} a^{5} + \frac{16}{45} a^{4} - \frac{2}{5} a^{3} + \frac{4}{15} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{22995} a^{14} + \frac{26}{22995} a^{13} - \frac{1}{7665} a^{12} + \frac{1297}{22995} a^{11} + \frac{1754}{22995} a^{10} - \frac{3607}{7665} a^{9} - \frac{2392}{22995} a^{8} + \frac{9358}{22995} a^{7} - \frac{848}{7665} a^{6} - \frac{73}{315} a^{5} + \frac{7597}{22995} a^{4} - \frac{263}{1095} a^{3} + \frac{8}{73} a^{2} + \frac{160}{511} a - \frac{391}{1533}$, $\frac{1}{67564767053753701673559975} a^{15} - \frac{481579852261049588138}{67564767053753701673559975} a^{14} + \frac{201520679984963353541264}{22521589017917900557853325} a^{13} - \frac{3026344513462114197797}{900863560716716022314133} a^{12} - \frac{104759613568971896860033}{2702590682150148066942399} a^{11} + \frac{29441865172651675626813089}{67564767053753701673559975} a^{10} - \frac{5526963548046097005184796}{13512953410750740334711995} a^{9} - \frac{14087878057689079042003177}{67564767053753701673559975} a^{8} - \frac{116165245401882504831553}{4504317803583580111570665} a^{7} - \frac{11216872618509812388309158}{22521589017917900557853325} a^{6} - \frac{325558997367962134564888}{1930421915821534333530285} a^{5} - \frac{7067952353409911111763368}{67564767053753701673559975} a^{4} - \frac{951443901536924675677819}{3217369859702557222550475} a^{3} - \frac{8739990991931902165242823}{22521589017917900557853325} a^{2} + \frac{7989476411264126657409794}{22521589017917900557853325} a - \frac{4306292872655061552621464}{22521589017917900557853325}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{36921365106}{188280668324725} a^{15} + \frac{118310705419}{564842004974175} a^{14} + \frac{2022846387779}{564842004974175} a^{13} - \frac{219281853057}{37656133664945} a^{12} - \frac{2807885611939}{112968400994835} a^{11} + \frac{24458951411648}{564842004974175} a^{10} - \frac{73655926932}{7531226732989} a^{9} - \frac{188538992666614}{564842004974175} a^{8} + \frac{27749547249101}{112968400994835} a^{7} + \frac{135873862258019}{188280668324725} a^{6} - \frac{174735924804509}{112968400994835} a^{5} - \frac{328815252097976}{564842004974175} a^{4} + \frac{786609814496154}{188280668324725} a^{3} + \frac{76533010158734}{188280668324725} a^{2} - \frac{722082103992477}{188280668324725} a + \frac{92221951777917}{188280668324725} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 435198.818124 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-183}) \), 4.2.11163.1 x2, 4.0.549.1 x2, \(\Q(\sqrt{-3}, \sqrt{61})\), 8.0.615710703429.2, 8.0.165469149.1, 8.0.1121513121.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 61 | Data not computed | ||||||