Normalized defining polynomial
\( x^{16} - 2 x^{15} + 36 x^{14} - 74 x^{13} + 588 x^{12} - 1188 x^{11} + 5724 x^{10} - 10874 x^{9} + 35612 x^{8} - 59336 x^{7} + 138428 x^{6} - 184906 x^{5} + 306639 x^{4} - 290252 x^{3} + 326644 x^{2} - 169936 x + 114577 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37787193273718832889856=2^{24}\cdot 83^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{289971328627635333027516647} a^{15} + \frac{143608130772397188019239758}{289971328627635333027516647} a^{14} - \frac{27878565113370517968637062}{289971328627635333027516647} a^{13} - \frac{123342215755573737562399900}{289971328627635333027516647} a^{12} + \frac{19216873119815125692897251}{289971328627635333027516647} a^{11} + \frac{102263434799783139311683331}{289971328627635333027516647} a^{10} + \frac{64852745936498376408049381}{289971328627635333027516647} a^{9} - \frac{58169529929743246192466455}{289971328627635333027516647} a^{8} + \frac{132371336598737628221274936}{289971328627635333027516647} a^{7} - \frac{135634837320559358109139141}{289971328627635333027516647} a^{6} - \frac{86521599192572598088826046}{289971328627635333027516647} a^{5} - \frac{9225587976984681039496588}{289971328627635333027516647} a^{4} - \frac{59123630851688917618436080}{289971328627635333027516647} a^{3} - \frac{50048030935434709825975990}{289971328627635333027516647} a^{2} + \frac{3423661284106212923284562}{289971328627635333027516647} a - \frac{134626357982186597489399327}{289971328627635333027516647}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4944473640752}{684287501725903} a^{15} - \frac{1821871644945}{684287501725903} a^{14} + \frac{159740111461603}{684287501725903} a^{13} - \frac{89486260655878}{684287501725903} a^{12} + \frac{2256997087501000}{684287501725903} a^{11} - \frac{1580863062294933}{684287501725903} a^{10} + \frac{18339748668756864}{684287501725903} a^{9} - \frac{14077652113659103}{684287501725903} a^{8} + \frac{89939294721723229}{684287501725903} a^{7} - \frac{61482899490151477}{684287501725903} a^{6} + \frac{249724906531646531}{684287501725903} a^{5} - \frac{96960802653260533}{684287501725903} a^{4} + \frac{315499104328338364}{684287501725903} a^{3} + \frac{61953506061153671}{684287501725903} a^{2} + \frac{95851018417367252}{684287501725903} a + \frac{179115243170663793}{684287501725903} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56269.8079492 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3:S_4.C_2$ (as 16T764):
| A solvable group of order 384 |
| The 23 conjugacy class representatives for $C_2^3:S_4.C_2$ |
| Character table for $C_2^3:S_4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.2.1328.1, 8.0.1763584.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $83$ | 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.8.6.1 | $x^{8} - 83 x^{4} + 110224$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |