Normalized defining polynomial
\( x^{16} - 2 x^{15} + 2 x^{14} - 18 x^{13} + 38 x^{12} - 2 x^{11} + 90 x^{10} - 174 x^{9} + 25 x^{8} - 348 x^{7} + 360 x^{6} - 16 x^{5} + 608 x^{4} - 576 x^{3} + 128 x^{2} - 256 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37780199833600000000=2^{24}\cdot 5^{8}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{480} a^{12} + \frac{1}{240} a^{11} - \frac{19}{240} a^{10} + \frac{17}{80} a^{9} + \frac{31}{240} a^{8} - \frac{7}{80} a^{7} - \frac{23}{240} a^{6} - \frac{9}{80} a^{5} + \frac{113}{480} a^{4} - \frac{1}{20} a^{3} - \frac{1}{60} a^{2} - \frac{11}{30} a - \frac{11}{30}$, $\frac{1}{960} a^{13} - \frac{7}{160} a^{11} - \frac{31}{480} a^{10} + \frac{49}{480} a^{9} - \frac{83}{480} a^{8} + \frac{19}{480} a^{7} - \frac{101}{480} a^{6} - \frac{19}{960} a^{5} + \frac{23}{96} a^{4} - \frac{11}{24} a^{3} + \frac{1}{3} a^{2} - \frac{19}{60} a + \frac{11}{30}$, $\frac{1}{1084800} a^{14} - \frac{5}{21696} a^{13} - \frac{1}{7232} a^{12} + \frac{4151}{542400} a^{11} + \frac{29531}{542400} a^{10} - \frac{42747}{180800} a^{9} - \frac{241}{1600} a^{8} - \frac{25501}{180800} a^{7} - \frac{189}{3200} a^{6} + \frac{4341}{90400} a^{5} + \frac{5443}{33900} a^{4} + \frac{30337}{67800} a^{3} - \frac{117}{904} a^{2} - \frac{1067}{3390} a + \frac{1696}{8475}$, $\frac{1}{67257600} a^{15} + \frac{1}{11209600} a^{14} - \frac{1669}{6725760} a^{13} - \frac{2003}{11209600} a^{12} + \frac{309069}{11209600} a^{11} - \frac{167939}{2241920} a^{10} - \frac{3427}{14464} a^{9} + \frac{5733053}{33628800} a^{8} + \frac{1010971}{22419200} a^{7} - \frac{1541}{542400} a^{6} + \frac{195917}{16814400} a^{5} - \frac{2305639}{8407200} a^{4} + \frac{492727}{4203600} a^{3} + \frac{16813}{105090} a^{2} + \frac{160409}{350300} a + \frac{251681}{525450}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6547}{1345152} a^{15} - \frac{81}{448384} a^{14} - \frac{133}{168144} a^{13} - \frac{25219}{336288} a^{12} + \frac{8857}{336288} a^{11} + \frac{68869}{336288} a^{10} + \frac{1567}{2712} a^{9} + \frac{12809}{112096} a^{8} - \frac{613415}{1345152} a^{7} - \frac{25205}{14464} a^{6} - \frac{148341}{112096} a^{5} + \frac{11941}{112096} a^{4} + \frac{9590}{3503} a^{3} + \frac{88603}{84072} a^{2} - \frac{2125}{3503} a - \frac{25795}{21018} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4301.25670415 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4$ (as 16T9):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $D_4\times C_2$ |
| Character table for $D_4\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ |
| 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |