Normalized defining polynomial
\( x^{16} - 16 x^{14} + 118 x^{12} - 432 x^{10} + 865 x^{8} - 680 x^{6} - 68 x^{4} - 2448 x^{2} + 5508 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37682348496175843883614208=2^{40}\cdot 17^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{3}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{104} a^{12} + \frac{3}{104} a^{10} + \frac{11}{104} a^{8} - \frac{1}{8} a^{6} + \frac{9}{26} a^{4} + \frac{15}{52} a^{2} - \frac{5}{26}$, $\frac{1}{312} a^{13} - \frac{5}{156} a^{11} - \frac{1}{156} a^{9} - \frac{1}{4} a^{7} - \frac{29}{312} a^{5} + \frac{1}{78} a^{3} + \frac{29}{156} a$, $\frac{1}{432549000} a^{14} - \frac{661121}{216274500} a^{12} - \frac{1247713}{86509800} a^{10} - \frac{1}{8} a^{9} - \frac{343361}{6007625} a^{8} - \frac{1}{4} a^{7} - \frac{22907659}{216274500} a^{6} - \frac{3}{8} a^{5} + \frac{37439047}{108137250} a^{4} - \frac{1}{2} a^{3} + \frac{13370243}{54068625} a^{2} + \frac{1}{4} a + \frac{1220364}{6007625}$, $\frac{1}{2595294000} a^{15} - \frac{1}{865098000} a^{14} + \frac{2836883}{2595294000} a^{13} - \frac{2836883}{865098000} a^{12} - \frac{31193413}{519058800} a^{11} + \frac{9565963}{173019600} a^{10} - \frac{21694013}{288366000} a^{9} + \frac{9678763}{96122000} a^{8} - \frac{19244071}{324411750} a^{7} + \frac{22907659}{432549000} a^{6} - \frac{553149781}{1297647000} a^{5} + \frac{16633039}{108137250} a^{4} + \frac{247174111}{648823500} a^{3} - \frac{21242059}{54068625} a^{2} - \frac{4473193}{18022875} a + \frac{11885147}{24030500}$
Class group and class number
$C_{8}$, which has order $8$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3097}{3460392} a^{14} - \frac{42091}{3460392} a^{12} + \frac{262927}{3460392} a^{10} - \frac{74831}{384488} a^{8} + \frac{184705}{865098} a^{6} + \frac{584885}{1730196} a^{4} - \frac{113849}{865098} a^{2} - \frac{97793}{48061} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2336931.55822 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 58 conjugacy class representatives for t16n1230 are not computed |
| Character table for t16n1230 is not computed |
Intermediate fields
| \(\Q(\sqrt{-17}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{17})\), 8.0.23262937088.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.78 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 2$ | $8$ | $1$ | $24$ | $Z_8 : Z_8^\times$ | $[2, 2, 3, 4]^{2}$ |
| 2.8.16.65 | $x^{8} + 4 x^{6} + 28 x^{4} + 20$ | $8$ | $1$ | $16$ | $QD_{16}$ | $[2, 2, 5/2]^{2}$ | |
| $17$ | 17.8.7.2 | $x^{8} - 153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |